MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supub Structured version   Visualization version   GIF version

Theorem supub 9499
Description: A supremum is an upper bound. See also supcl 9498 and suplub 9500.

This proof demonstrates how to expand an iota-based definition (df-iota 6514) using riotacl2 7404.

(Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)

Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
supcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
supub (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem supub
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
21a1i 11 . . . . 5 (𝑥𝐴 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦))
32ss2rabi 4077 . . . 4 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ⊆ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦}
4 supmo.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
54supval2 9495 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
6 supcl.2 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
74, 6supeu 9494 . . . . . 6 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
8 riotacl2 7404 . . . . . 6 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
97, 8syl 17 . . . . 5 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
105, 9eqeltrd 2841 . . . 4 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
113, 10sselid 3981 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦})
12 breq2 5147 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝑅𝑦𝑥𝑅𝑤))
1312notbid 318 . . . . . . 7 (𝑦 = 𝑤 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑤))
1413cbvralvw 3237 . . . . . 6 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ 𝑥𝑅𝑤)
15 breq1 5146 . . . . . . . 8 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑥𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1615notbid 318 . . . . . . 7 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (¬ 𝑥𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1716ralbidv 3178 . . . . . 6 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤𝐵 ¬ 𝑥𝑅𝑤 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1814, 17bitrid 283 . . . . 5 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1918elrab 3692 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2019simprbi 496 . . 3 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
2111, 20syl 17 . 2 (𝜑 → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
22 breq2 5147 . . . 4 (𝑤 = 𝐶 → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2322notbid 318 . . 3 (𝑤 = 𝐶 → (¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2423rspccv 3619 . 2 (∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2521, 24syl 17 1 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  ∃!wreu 3378  {crab 3436   class class class wbr 5143   Or wor 5591  crio 7387  supcsup 9480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-po 5592  df-so 5593  df-iota 6514  df-riota 7388  df-sup 9482
This theorem is referenced by:  suplub2  9501  supgtoreq  9510  supiso  9515  inflb  9529  suprub  12229  suprzub  12981  supxrun  13358  supxrub  13366  dgrub  26273  supssd  32721  ssnnssfz  32789  oddpwdc  34356  itg2addnclem  37678  supubt  37746  supinf  42283  sn-suprubd  42504  ssnn0ssfz  48265
  Copyright terms: Public domain W3C validator