Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  supub Structured version   Visualization version   GIF version

Theorem supub 8907
 Description: A supremum is an upper bound. See also supcl 8906 and suplub 8908. This proof demonstrates how to expand an iota-based definition (df-iota 6295) using riotacl2 7112. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
supcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
supub (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem supub
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . . 6 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
21a1i 11 . . . . 5 (𝑥𝐴 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦))
32ss2rabi 4037 . . . 4 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ⊆ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦}
4 supmo.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
54supval2 8903 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
6 supcl.2 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
74, 6supeu 8902 . . . . . 6 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
8 riotacl2 7112 . . . . . 6 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
97, 8syl 17 . . . . 5 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
105, 9eqeltrd 2916 . . . 4 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
113, 10sseldi 3949 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦})
12 breq2 5051 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝑅𝑦𝑥𝑅𝑤))
1312notbid 321 . . . . . . 7 (𝑦 = 𝑤 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑤))
1413cbvralvw 3434 . . . . . 6 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ 𝑥𝑅𝑤)
15 breq1 5050 . . . . . . . 8 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑥𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1615notbid 321 . . . . . . 7 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (¬ 𝑥𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1716ralbidv 3191 . . . . . 6 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤𝐵 ¬ 𝑥𝑅𝑤 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1814, 17syl5bb 286 . . . . 5 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1918elrab 3665 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2019simprbi 500 . . 3 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
2111, 20syl 17 . 2 (𝜑 → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
22 breq2 5051 . . . 4 (𝑤 = 𝐶 → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2322notbid 321 . . 3 (𝑤 = 𝐶 → (¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2423rspccv 3605 . 2 (∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2521, 24syl 17 1 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3132  ∃wrex 3133  ∃!wreu 3134  {crab 3136   class class class wbr 5047   Or wor 5454  ℩crio 7095  supcsup 8888 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-po 5455  df-so 5456  df-iota 6295  df-riota 7096  df-sup 8890 This theorem is referenced by:  suplub2  8909  supgtoreq  8918  supiso  8923  inflb  8937  suprub  11587  suprzub  12325  supxrun  12695  supxrub  12703  dgrub  24820  supssd  30442  ssnnssfz  30507  oddpwdc  31630  itg2addnclem  35008  supubt  35077  ssnn0ssfz  44592
 Copyright terms: Public domain W3C validator