MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supub Structured version   Visualization version   GIF version

Theorem supub 9450
Description: A supremum is an upper bound. See also supcl 9449 and suplub 9451.

This proof demonstrates how to expand an iota-based definition (df-iota 6485) using riotacl2 7374.

(Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)

Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
supcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
supub (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem supub
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
21a1i 11 . . . . 5 (𝑥𝐴 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦))
32ss2rabi 4066 . . . 4 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ⊆ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦}
4 supmo.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
54supval2 9446 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
6 supcl.2 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
74, 6supeu 9445 . . . . . 6 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
8 riotacl2 7374 . . . . . 6 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
97, 8syl 17 . . . . 5 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
105, 9eqeltrd 2825 . . . 4 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
113, 10sselid 3972 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦})
12 breq2 5142 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝑅𝑦𝑥𝑅𝑤))
1312notbid 318 . . . . . . 7 (𝑦 = 𝑤 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑤))
1413cbvralvw 3226 . . . . . 6 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ 𝑥𝑅𝑤)
15 breq1 5141 . . . . . . . 8 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑥𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1615notbid 318 . . . . . . 7 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (¬ 𝑥𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1716ralbidv 3169 . . . . . 6 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤𝐵 ¬ 𝑥𝑅𝑤 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1814, 17bitrid 283 . . . . 5 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1918elrab 3675 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2019simprbi 496 . . 3 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
2111, 20syl 17 . 2 (𝜑 → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
22 breq2 5142 . . . 4 (𝑤 = 𝐶 → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2322notbid 318 . . 3 (𝑤 = 𝐶 → (¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2423rspccv 3601 . 2 (∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2521, 24syl 17 1 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  wrex 3062  ∃!wreu 3366  {crab 3424   class class class wbr 5138   Or wor 5577  crio 7356  supcsup 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-po 5578  df-so 5579  df-iota 6485  df-riota 7357  df-sup 9433
This theorem is referenced by:  suplub2  9452  supgtoreq  9461  supiso  9466  inflb  9480  suprub  12172  suprzub  12920  supxrun  13292  supxrub  13300  dgrub  26088  supssd  32403  ssnnssfz  32467  oddpwdc  33842  itg2addnclem  37029  supubt  37097  ssnn0ssfz  47214
  Copyright terms: Public domain W3C validator