![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reuabaiotaiota | Structured version Visualization version GIF version |
Description: The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique satisfying value of {𝑥 ∣ 𝜑} = {𝑦}. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
reuabaiotaiota | ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniintab 4986 | . 2 ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}}) | |
2 | df-iota 6494 | . . 3 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
3 | df-aiota 46388 | . . 3 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
4 | 2, 3 | eqeq12i 2745 | . 2 ⊢ ((℩𝑥𝜑) = (℩'𝑥𝜑) ↔ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}}) |
5 | 1, 4 | bitr4i 278 | 1 ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∃!weu 2557 {cab 2704 {csn 4624 ∪ cuni 4903 ∩ cint 4944 ℩cio 6492 ℩'caiota 46386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-sn 4625 df-pr 4627 df-uni 4904 df-int 4945 df-iota 6494 df-aiota 46388 |
This theorem is referenced by: reuaiotaiota 46391 aiotaval 46398 |
Copyright terms: Public domain | W3C validator |