Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuabaiotaiota Structured version   Visualization version   GIF version

Theorem reuabaiotaiota 47057
Description: The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique satisfying value of {𝑥𝜑} = {𝑦}. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
reuabaiotaiota (∃!𝑦{𝑥𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuabaiotaiota
StepHypRef Expression
1 uniintab 4966 . 2 (∃!𝑦{𝑥𝜑} = {𝑦} ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ {𝑥𝜑} = {𝑦}})
2 df-iota 6494 . . 3 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
3 df-aiota 47055 . . 3 (℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
42, 3eqeq12i 2752 . 2 ((℩𝑥𝜑) = (℩'𝑥𝜑) ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ {𝑥𝜑} = {𝑦}})
51, 4bitr4i 278 1 (∃!𝑦{𝑥𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  ∃!weu 2566  {cab 2712  {csn 4606   cuni 4887   cint 4926  cio 6492  ℩'caiota 47053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4888  df-int 4927  df-iota 6494  df-aiota 47055
This theorem is referenced by:  reuaiotaiota  47058  aiotaval  47065
  Copyright terms: Public domain W3C validator