Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuabaiotaiota Structured version   Visualization version   GIF version

Theorem reuabaiotaiota 46390
Description: The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique satisfying value of {𝑥𝜑} = {𝑦}. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
reuabaiotaiota (∃!𝑦{𝑥𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuabaiotaiota
StepHypRef Expression
1 uniintab 4986 . 2 (∃!𝑦{𝑥𝜑} = {𝑦} ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ {𝑥𝜑} = {𝑦}})
2 df-iota 6494 . . 3 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
3 df-aiota 46388 . . 3 (℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
42, 3eqeq12i 2745 . 2 ((℩𝑥𝜑) = (℩'𝑥𝜑) ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ {𝑥𝜑} = {𝑦}})
51, 4bitr4i 278 1 (∃!𝑦{𝑥𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  ∃!weu 2557  {cab 2704  {csn 4624   cuni 4903   cint 4944  cio 6492  ℩'caiota 46386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-sn 4625  df-pr 4627  df-uni 4904  df-int 4945  df-iota 6494  df-aiota 46388
This theorem is referenced by:  reuaiotaiota  46391  aiotaval  46398
  Copyright terms: Public domain W3C validator