![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reuabaiotaiota | Structured version Visualization version GIF version |
Description: The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique satisfying value of {𝑥 ∣ 𝜑} = {𝑦}. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
reuabaiotaiota | ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniintab 4992 | . 2 ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}}) | |
2 | df-iota 6495 | . . 3 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
3 | df-aiota 45783 | . . 3 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
4 | 2, 3 | eqeq12i 2750 | . 2 ⊢ ((℩𝑥𝜑) = (℩'𝑥𝜑) ↔ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}}) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∃!weu 2562 {cab 2709 {csn 4628 ∪ cuni 4908 ∩ cint 4950 ℩cio 6493 ℩'caiota 45781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-pr 4631 df-uni 4909 df-int 4951 df-iota 6495 df-aiota 45783 |
This theorem is referenced by: reuaiotaiota 45786 aiotaval 45793 |
Copyright terms: Public domain | W3C validator |