Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuabaiotaiota Structured version   Visualization version   GIF version

Theorem reuabaiotaiota 47097
Description: The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique satisfying value of {𝑥𝜑} = {𝑦}. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
reuabaiotaiota (∃!𝑦{𝑥𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuabaiotaiota
StepHypRef Expression
1 uniintab 4934 . 2 (∃!𝑦{𝑥𝜑} = {𝑦} ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ {𝑥𝜑} = {𝑦}})
2 df-iota 6433 . . 3 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
3 df-aiota 47095 . . 3 (℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
42, 3eqeq12i 2748 . 2 ((℩𝑥𝜑) = (℩'𝑥𝜑) ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ {𝑥𝜑} = {𝑦}})
51, 4bitr4i 278 1 (∃!𝑦{𝑥𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  ∃!weu 2562  {cab 2708  {csn 4574   cuni 4857   cint 4895  cio 6431  ℩'caiota 47093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-sn 4575  df-pr 4577  df-uni 4858  df-int 4896  df-iota 6433  df-aiota 47095
This theorem is referenced by:  reuaiotaiota  47098  aiotaval  47105
  Copyright terms: Public domain W3C validator