MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotanul2 Structured version   Visualization version   GIF version

Theorem iotanul2 6428
Description: Version of iotanul 6436 using df-iota 6410 instead of dfiota2 6411. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotanul2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotanul2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iota 6410 . 2 (℩𝑥𝜑) = {𝑤 ∣ {𝑥𝜑} = {𝑤}}
2 n0 4286 . . . 4 ( {𝑤 ∣ {𝑥𝜑} = {𝑤}} ≠ ∅ ↔ ∃𝑣 𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}})
3 eluni 4847 . . . . . 6 (𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}} ↔ ∃𝑦(𝑣𝑦𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}}))
4 vex 3441 . . . . . . . . . 10 𝑦 ∈ V
5 sneq 4575 . . . . . . . . . . 11 (𝑤 = 𝑦 → {𝑤} = {𝑦})
65eqeq2d 2747 . . . . . . . . . 10 (𝑤 = 𝑦 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑦}))
74, 6elab 3614 . . . . . . . . 9 (𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}} ↔ {𝑥𝜑} = {𝑦})
87biimpi 215 . . . . . . . 8 (𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}} → {𝑥𝜑} = {𝑦})
98adantl 483 . . . . . . 7 ((𝑣𝑦𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}}) → {𝑥𝜑} = {𝑦})
109eximi 1835 . . . . . 6 (∃𝑦(𝑣𝑦𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}}) → ∃𝑦{𝑥𝜑} = {𝑦})
113, 10sylbi 216 . . . . 5 (𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}} → ∃𝑦{𝑥𝜑} = {𝑦})
1211exlimiv 1931 . . . 4 (∃𝑣 𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}} → ∃𝑦{𝑥𝜑} = {𝑦})
132, 12sylbi 216 . . 3 ( {𝑤 ∣ {𝑥𝜑} = {𝑤}} ≠ ∅ → ∃𝑦{𝑥𝜑} = {𝑦})
1413necon1bi 2970 . 2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → {𝑤 ∣ {𝑥𝜑} = {𝑤}} = ∅)
151, 14eqtrid 2788 1 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1539  wex 1779  wcel 2104  {cab 2713  wne 2941  c0 4262  {csn 4565   cuni 4844  cio 6408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-v 3439  df-dif 3895  df-nul 4263  df-sn 4566  df-uni 4845  df-iota 6410
This theorem is referenced by:  iotassuni  6430  iotaex  6431
  Copyright terms: Public domain W3C validator