| Step | Hyp | Ref
| Expression |
| 1 | | df-iota 6489 |
. 2
⊢
(℩𝑥𝜑) = ∪
{𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} |
| 2 | | n0 4333 |
. . . 4
⊢ (∪ {𝑤
∣ {𝑥 ∣ 𝜑} = {𝑤}} ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}}) |
| 3 | | eluni 4891 |
. . . . . 6
⊢ (𝑣 ∈ ∪ {𝑤
∣ {𝑥 ∣ 𝜑} = {𝑤}} ↔ ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 ∈ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}})) |
| 4 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 5 | | sneq 4616 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → {𝑤} = {𝑦}) |
| 6 | 5 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑤} ↔ {𝑥 ∣ 𝜑} = {𝑦})) |
| 7 | 4, 6 | elab 3663 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} ↔ {𝑥 ∣ 𝜑} = {𝑦}) |
| 8 | 7 | biimpi 216 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} → {𝑥 ∣ 𝜑} = {𝑦}) |
| 9 | 8 | adantl 481 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑦 ∧ 𝑦 ∈ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}}) → {𝑥 ∣ 𝜑} = {𝑦}) |
| 10 | 9 | eximi 1835 |
. . . . . 6
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 ∈ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}}) → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 11 | 3, 10 | sylbi 217 |
. . . . 5
⊢ (𝑣 ∈ ∪ {𝑤
∣ {𝑥 ∣ 𝜑} = {𝑤}} → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 12 | 11 | exlimiv 1930 |
. . . 4
⊢
(∃𝑣 𝑣 ∈ ∪ {𝑤
∣ {𝑥 ∣ 𝜑} = {𝑤}} → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 13 | 2, 12 | sylbi 217 |
. . 3
⊢ (∪ {𝑤
∣ {𝑥 ∣ 𝜑} = {𝑤}} ≠ ∅ → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 14 | 13 | necon1bi 2961 |
. 2
⊢ (¬
∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = ∅) |
| 15 | 1, 14 | eqtrid 2783 |
1
⊢ (¬
∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) |