MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotanul2 Structured version   Visualization version   GIF version

Theorem iotanul2 6543
Description: Version of iotanul 6551 using df-iota 6525 instead of dfiota2 6526. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotanul2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotanul2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iota 6525 . 2 (℩𝑥𝜑) = {𝑤 ∣ {𝑥𝜑} = {𝑤}}
2 n0 4376 . . . 4 ( {𝑤 ∣ {𝑥𝜑} = {𝑤}} ≠ ∅ ↔ ∃𝑣 𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}})
3 eluni 4934 . . . . . 6 (𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}} ↔ ∃𝑦(𝑣𝑦𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}}))
4 vex 3492 . . . . . . . . . 10 𝑦 ∈ V
5 sneq 4658 . . . . . . . . . . 11 (𝑤 = 𝑦 → {𝑤} = {𝑦})
65eqeq2d 2751 . . . . . . . . . 10 (𝑤 = 𝑦 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑦}))
74, 6elab 3694 . . . . . . . . 9 (𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}} ↔ {𝑥𝜑} = {𝑦})
87biimpi 216 . . . . . . . 8 (𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}} → {𝑥𝜑} = {𝑦})
98adantl 481 . . . . . . 7 ((𝑣𝑦𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}}) → {𝑥𝜑} = {𝑦})
109eximi 1833 . . . . . 6 (∃𝑦(𝑣𝑦𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}}) → ∃𝑦{𝑥𝜑} = {𝑦})
113, 10sylbi 217 . . . . 5 (𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}} → ∃𝑦{𝑥𝜑} = {𝑦})
1211exlimiv 1929 . . . 4 (∃𝑣 𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}} → ∃𝑦{𝑥𝜑} = {𝑦})
132, 12sylbi 217 . . 3 ( {𝑤 ∣ {𝑥𝜑} = {𝑤}} ≠ ∅ → ∃𝑦{𝑥𝜑} = {𝑦})
1413necon1bi 2975 . 2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → {𝑤 ∣ {𝑥𝜑} = {𝑤}} = ∅)
151, 14eqtrid 2792 1 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  c0 4352  {csn 4648   cuni 4931  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-nul 4353  df-sn 4649  df-uni 4932  df-iota 6525
This theorem is referenced by:  iotassuni  6545  iotaex  6546  sn-tz6.12-2  42635
  Copyright terms: Public domain W3C validator