MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotacl2 Structured version   Visualization version   GIF version

Theorem riotacl2 7242
Description: Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
riotacl2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})

Proof of Theorem riotacl2
StepHypRef Expression
1 df-reu 3072 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iotacl 6416 . . 3 (∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
31, 2sylbi 216 . 2 (∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
4 df-riota 7225 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
5 df-rab 3074 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
63, 4, 53eltr4g 2857 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  ∃!weu 2569  {cab 2716  ∃!wreu 3067  {crab 3069  cio 6386  crio 7224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-un 3896  df-in 3898  df-ss 3908  df-sn 4567  df-pr 4569  df-uni 4845  df-iota 6388  df-riota 7225
This theorem is referenced by:  riotacl  7243  riotasbc  7244  riotaxfrd  7260  supub  9179  suplub  9180  ordtypelem3  9240  catlid  17373  catrid  17374  grplinv  18609  pj1id  19286  evlsval2  21278  ig1pval3  25320  coelem  25368  quotlem  25441  mircgr  26999  mirbtwn  27000  grpoidinv2  28856  grpoinv  28866  cnlnadjlem5  30412  cvmsiota  33218  cvmliftiota  33242  mpaalem  40957  disjinfi  42684
  Copyright terms: Public domain W3C validator