| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl2 | Structured version Visualization version GIF version | ||
| Description: Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotacl2 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 3346 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | iotacl 6472 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 4 | df-riota 7310 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rab 3397 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 6 | 3, 4, 5 | 3eltr4g 2845 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃!weu 2561 {cab 2707 ∃!wreu 3343 {crab 3396 ℩cio 6440 ℩crio 7309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-un 3910 df-ss 3922 df-sn 4580 df-pr 4582 df-uni 4862 df-iota 6442 df-riota 7310 |
| This theorem is referenced by: riotacl 7327 riotasbc 7328 riotaxfrd 7344 supub 9368 suplub 9369 ordtypelem3 9431 catlid 17607 catrid 17608 grplinv 18886 pj1id 19596 evlsval2 22010 ig1pval3 26099 coelem 26147 quotlem 26224 mircgr 28620 mirbtwn 28621 grpoidinv2 30477 grpoinv 30487 cnlnadjlem5 32033 cvmsiota 35249 cvmliftiota 35273 weiunlem2 36436 weiunfrlem 36437 linvh 42069 mpaalem 43125 disjinfi 45170 |
| Copyright terms: Public domain | W3C validator |