MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotacl2 Structured version   Visualization version   GIF version

Theorem riotacl2 7404
Description: Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
riotacl2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})

Proof of Theorem riotacl2
StepHypRef Expression
1 df-reu 3381 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iotacl 6547 . . 3 (∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
31, 2sylbi 217 . 2 (∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
4 df-riota 7388 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
5 df-rab 3437 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
63, 4, 53eltr4g 2858 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ∃!weu 2568  {cab 2714  ∃!wreu 3378  {crab 3436  cio 6512  crio 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-un 3956  df-ss 3968  df-sn 4627  df-pr 4629  df-uni 4908  df-iota 6514  df-riota 7388
This theorem is referenced by:  riotacl  7405  riotasbc  7406  riotaxfrd  7422  supub  9499  suplub  9500  ordtypelem3  9560  catlid  17726  catrid  17727  grplinv  19007  pj1id  19717  evlsval2  22111  ig1pval3  26217  coelem  26265  quotlem  26342  mircgr  28665  mirbtwn  28666  grpoidinv2  30534  grpoinv  30544  cnlnadjlem5  32090  cvmsiota  35282  cvmliftiota  35306  weiunlem2  36464  weiunfrlem  36465  linvh  42097  mpaalem  43164  disjinfi  45197
  Copyright terms: Public domain W3C validator