| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl2 | Structured version Visualization version GIF version | ||
| Description: Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotacl2 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 3365 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | iotacl 6522 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 4 | df-riota 7367 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rab 3421 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 6 | 3, 4, 5 | 3eltr4g 2852 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃!weu 2568 {cab 2714 ∃!wreu 3362 {crab 3420 ℩cio 6487 ℩crio 7366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 df-riota 7367 |
| This theorem is referenced by: riotacl 7384 riotasbc 7385 riotaxfrd 7401 supub 9476 suplub 9477 ordtypelem3 9539 catlid 17700 catrid 17701 grplinv 18977 pj1id 19685 evlsval2 22050 ig1pval3 26140 coelem 26188 quotlem 26265 mircgr 28641 mirbtwn 28642 grpoidinv2 30501 grpoinv 30511 cnlnadjlem5 32057 cvmsiota 35304 cvmliftiota 35328 weiunlem2 36486 weiunfrlem 36487 linvh 42114 mpaalem 43143 disjinfi 45183 |
| Copyright terms: Public domain | W3C validator |