|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > riotacl2 | Structured version Visualization version GIF version | ||
| Description: Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| riotacl2 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-reu 3381 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | iotacl 6547 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | 
| 4 | df-riota 7388 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rab 3437 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 6 | 3, 4, 5 | 3eltr4g 2858 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃!weu 2568 {cab 2714 ∃!wreu 3378 {crab 3436 ℩cio 6512 ℩crio 7387 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-un 3956 df-ss 3968 df-sn 4627 df-pr 4629 df-uni 4908 df-iota 6514 df-riota 7388 | 
| This theorem is referenced by: riotacl 7405 riotasbc 7406 riotaxfrd 7422 supub 9499 suplub 9500 ordtypelem3 9560 catlid 17726 catrid 17727 grplinv 19007 pj1id 19717 evlsval2 22111 ig1pval3 26217 coelem 26265 quotlem 26342 mircgr 28665 mirbtwn 28666 grpoidinv2 30534 grpoinv 30544 cnlnadjlem5 32090 cvmsiota 35282 cvmliftiota 35306 weiunlem2 36464 weiunfrlem 36465 linvh 42097 mpaalem 43164 disjinfi 45197 | 
| Copyright terms: Public domain | W3C validator |