| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl2 | Structured version Visualization version GIF version | ||
| Description: Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotacl2 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 3348 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | iotacl 6472 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 4 | df-riota 7309 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rab 3397 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 6 | 3, 4, 5 | 3eltr4g 2850 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∃!weu 2565 {cab 2711 ∃!wreu 3345 {crab 3396 ℩cio 6440 ℩crio 7308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-un 3903 df-ss 3915 df-sn 4576 df-pr 4578 df-uni 4859 df-iota 6442 df-riota 7309 |
| This theorem is referenced by: riotacl 7326 riotasbc 7327 riotaxfrd 7343 supub 9350 suplub 9351 ordtypelem3 9413 catlid 17591 catrid 17592 grplinv 18904 pj1id 19613 evlsval2 22023 ig1pval3 26111 coelem 26159 quotlem 26236 mircgr 28636 mirbtwn 28637 grpoidinv2 30497 grpoinv 30507 cnlnadjlem5 32053 cvmsiota 35342 cvmliftiota 35366 weiunlem2 36528 weiunfrlem 36529 linvh 42210 mpaalem 43270 disjinfi 45314 |
| Copyright terms: Public domain | W3C validator |