MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smobeth Structured version   Visualization version   GIF version

Theorem smobeth 10583
Description: The beth function is strictly monotone. This function is not strictly the beth function, but rather bethA is the same as (cardβ€˜(𝑅1β€˜(Ο‰ +o 𝐴))), since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 2-Jun-2015.)
Assertion
Ref Expression
smobeth Smo (card ∘ 𝑅1)

Proof of Theorem smobeth
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9940 . . . . . . 7 card:{π‘₯ ∣ βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ π‘₯}⟢On
2 ffun 6719 . . . . . . 7 (card:{π‘₯ ∣ βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ π‘₯}⟢On β†’ Fun card)
31, 2ax-mp 5 . . . . . 6 Fun card
4 r1fnon 9764 . . . . . . 7 𝑅1 Fn On
5 fnfun 6648 . . . . . . 7 (𝑅1 Fn On β†’ Fun 𝑅1)
64, 5ax-mp 5 . . . . . 6 Fun 𝑅1
7 funco 6587 . . . . . 6 ((Fun card ∧ Fun 𝑅1) β†’ Fun (card ∘ 𝑅1))
83, 6, 7mp2an 688 . . . . 5 Fun (card ∘ 𝑅1)
9 funfn 6577 . . . . 5 (Fun (card ∘ 𝑅1) ↔ (card ∘ 𝑅1) Fn dom (card ∘ 𝑅1))
108, 9mpbi 229 . . . 4 (card ∘ 𝑅1) Fn dom (card ∘ 𝑅1)
11 rnco 6250 . . . . 5 ran (card ∘ 𝑅1) = ran (card β†Ύ ran 𝑅1)
12 resss 6005 . . . . . . 7 (card β†Ύ ran 𝑅1) βŠ† card
1312rnssi 5938 . . . . . 6 ran (card β†Ύ ran 𝑅1) βŠ† ran card
14 frn 6723 . . . . . . 7 (card:{π‘₯ ∣ βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ π‘₯}⟢On β†’ ran card βŠ† On)
151, 14ax-mp 5 . . . . . 6 ran card βŠ† On
1613, 15sstri 3990 . . . . 5 ran (card β†Ύ ran 𝑅1) βŠ† On
1711, 16eqsstri 4015 . . . 4 ran (card ∘ 𝑅1) βŠ† On
18 df-f 6546 . . . 4 ((card ∘ 𝑅1):dom (card ∘ 𝑅1)⟢On ↔ ((card ∘ 𝑅1) Fn dom (card ∘ 𝑅1) ∧ ran (card ∘ 𝑅1) βŠ† On))
1910, 17, 18mpbir2an 707 . . 3 (card ∘ 𝑅1):dom (card ∘ 𝑅1)⟢On
20 dmco 6252 . . . 4 dom (card ∘ 𝑅1) = (◑𝑅1 β€œ dom card)
2120feq2i 6708 . . 3 ((card ∘ 𝑅1):dom (card ∘ 𝑅1)⟢On ↔ (card ∘ 𝑅1):(◑𝑅1 β€œ dom card)⟢On)
2219, 21mpbi 229 . 2 (card ∘ 𝑅1):(◑𝑅1 β€œ dom card)⟢On
23 elpreima 7058 . . . . . . . . 9 (𝑅1 Fn On β†’ (π‘₯ ∈ (◑𝑅1 β€œ dom card) ↔ (π‘₯ ∈ On ∧ (𝑅1β€˜π‘₯) ∈ dom card)))
244, 23ax-mp 5 . . . . . . . 8 (π‘₯ ∈ (◑𝑅1 β€œ dom card) ↔ (π‘₯ ∈ On ∧ (𝑅1β€˜π‘₯) ∈ dom card))
2524simplbi 496 . . . . . . 7 (π‘₯ ∈ (◑𝑅1 β€œ dom card) β†’ π‘₯ ∈ On)
26 onelon 6388 . . . . . . 7 ((π‘₯ ∈ On ∧ 𝑦 ∈ π‘₯) β†’ 𝑦 ∈ On)
2725, 26sylan 578 . . . . . 6 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ 𝑦 ∈ On)
2824simprbi 495 . . . . . . . 8 (π‘₯ ∈ (◑𝑅1 β€œ dom card) β†’ (𝑅1β€˜π‘₯) ∈ dom card)
2928adantr 479 . . . . . . 7 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ (𝑅1β€˜π‘₯) ∈ dom card)
30 r1ord2 9778 . . . . . . . . 9 (π‘₯ ∈ On β†’ (𝑦 ∈ π‘₯ β†’ (𝑅1β€˜π‘¦) βŠ† (𝑅1β€˜π‘₯)))
3130imp 405 . . . . . . . 8 ((π‘₯ ∈ On ∧ 𝑦 ∈ π‘₯) β†’ (𝑅1β€˜π‘¦) βŠ† (𝑅1β€˜π‘₯))
3225, 31sylan 578 . . . . . . 7 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ (𝑅1β€˜π‘¦) βŠ† (𝑅1β€˜π‘₯))
33 ssnum 10036 . . . . . . 7 (((𝑅1β€˜π‘₯) ∈ dom card ∧ (𝑅1β€˜π‘¦) βŠ† (𝑅1β€˜π‘₯)) β†’ (𝑅1β€˜π‘¦) ∈ dom card)
3429, 32, 33syl2anc 582 . . . . . 6 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ (𝑅1β€˜π‘¦) ∈ dom card)
35 elpreima 7058 . . . . . . 7 (𝑅1 Fn On β†’ (𝑦 ∈ (◑𝑅1 β€œ dom card) ↔ (𝑦 ∈ On ∧ (𝑅1β€˜π‘¦) ∈ dom card)))
364, 35ax-mp 5 . . . . . 6 (𝑦 ∈ (◑𝑅1 β€œ dom card) ↔ (𝑦 ∈ On ∧ (𝑅1β€˜π‘¦) ∈ dom card))
3727, 34, 36sylanbrc 581 . . . . 5 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ 𝑦 ∈ (◑𝑅1 β€œ dom card))
3837rgen2 3195 . . . 4 βˆ€π‘₯ ∈ (◑𝑅1 β€œ dom card)βˆ€π‘¦ ∈ π‘₯ 𝑦 ∈ (◑𝑅1 β€œ dom card)
39 dftr5 5268 . . . 4 (Tr (◑𝑅1 β€œ dom card) ↔ βˆ€π‘₯ ∈ (◑𝑅1 β€œ dom card)βˆ€π‘¦ ∈ π‘₯ 𝑦 ∈ (◑𝑅1 β€œ dom card))
4038, 39mpbir 230 . . 3 Tr (◑𝑅1 β€œ dom card)
41 cnvimass 6079 . . . . 5 (◑𝑅1 β€œ dom card) βŠ† dom 𝑅1
42 dffn2 6718 . . . . . . 7 (𝑅1 Fn On ↔ 𝑅1:On⟢V)
434, 42mpbi 229 . . . . . 6 𝑅1:On⟢V
4443fdmi 6728 . . . . 5 dom 𝑅1 = On
4541, 44sseqtri 4017 . . . 4 (◑𝑅1 β€œ dom card) βŠ† On
46 epweon 7764 . . . 4 E We On
47 wess 5662 . . . 4 ((◑𝑅1 β€œ dom card) βŠ† On β†’ ( E We On β†’ E We (◑𝑅1 β€œ dom card)))
4845, 46, 47mp2 9 . . 3 E We (◑𝑅1 β€œ dom card)
49 df-ord 6366 . . 3 (Ord (◑𝑅1 β€œ dom card) ↔ (Tr (◑𝑅1 β€œ dom card) ∧ E We (◑𝑅1 β€œ dom card)))
5040, 48, 49mpbir2an 707 . 2 Ord (◑𝑅1 β€œ dom card)
51 r1sdom 9771 . . . . . . 7 ((π‘₯ ∈ On ∧ 𝑦 ∈ π‘₯) β†’ (𝑅1β€˜π‘¦) β‰Ί (𝑅1β€˜π‘₯))
5225, 51sylan 578 . . . . . 6 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ (𝑅1β€˜π‘¦) β‰Ί (𝑅1β€˜π‘₯))
53 cardsdom2 9985 . . . . . . 7 (((𝑅1β€˜π‘¦) ∈ dom card ∧ (𝑅1β€˜π‘₯) ∈ dom card) β†’ ((cardβ€˜(𝑅1β€˜π‘¦)) ∈ (cardβ€˜(𝑅1β€˜π‘₯)) ↔ (𝑅1β€˜π‘¦) β‰Ί (𝑅1β€˜π‘₯)))
5434, 29, 53syl2anc 582 . . . . . 6 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ ((cardβ€˜(𝑅1β€˜π‘¦)) ∈ (cardβ€˜(𝑅1β€˜π‘₯)) ↔ (𝑅1β€˜π‘¦) β‰Ί (𝑅1β€˜π‘₯)))
5552, 54mpbird 256 . . . . 5 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ (cardβ€˜(𝑅1β€˜π‘¦)) ∈ (cardβ€˜(𝑅1β€˜π‘₯)))
56 fvco2 6987 . . . . . 6 ((𝑅1 Fn On ∧ 𝑦 ∈ On) β†’ ((card ∘ 𝑅1)β€˜π‘¦) = (cardβ€˜(𝑅1β€˜π‘¦)))
574, 27, 56sylancr 585 . . . . 5 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ ((card ∘ 𝑅1)β€˜π‘¦) = (cardβ€˜(𝑅1β€˜π‘¦)))
5825adantr 479 . . . . . 6 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ π‘₯ ∈ On)
59 fvco2 6987 . . . . . 6 ((𝑅1 Fn On ∧ π‘₯ ∈ On) β†’ ((card ∘ 𝑅1)β€˜π‘₯) = (cardβ€˜(𝑅1β€˜π‘₯)))
604, 58, 59sylancr 585 . . . . 5 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ ((card ∘ 𝑅1)β€˜π‘₯) = (cardβ€˜(𝑅1β€˜π‘₯)))
6155, 57, 603eltr4d 2846 . . . 4 ((π‘₯ ∈ (◑𝑅1 β€œ dom card) ∧ 𝑦 ∈ π‘₯) β†’ ((card ∘ 𝑅1)β€˜π‘¦) ∈ ((card ∘ 𝑅1)β€˜π‘₯))
6261ex 411 . . 3 (π‘₯ ∈ (◑𝑅1 β€œ dom card) β†’ (𝑦 ∈ π‘₯ β†’ ((card ∘ 𝑅1)β€˜π‘¦) ∈ ((card ∘ 𝑅1)β€˜π‘₯)))
6362adantl 480 . 2 ((𝑦 ∈ (◑𝑅1 β€œ dom card) ∧ π‘₯ ∈ (◑𝑅1 β€œ dom card)) β†’ (𝑦 ∈ π‘₯ β†’ ((card ∘ 𝑅1)β€˜π‘¦) ∈ ((card ∘ 𝑅1)β€˜π‘₯)))
6422, 50, 63, 20issmo 8350 1 Smo (card ∘ 𝑅1)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  {cab 2707  βˆ€wral 3059  βˆƒwrex 3068  Vcvv 3472   βŠ† wss 3947   class class class wbr 5147  Tr wtr 5264   E cep 5578   We wwe 5629  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678   ∘ ccom 5679  Ord word 6362  Oncon0 6363  Fun wfun 6536   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  Smo wsmo 8347   β‰ˆ cen 8938   β‰Ί csdm 8940  π‘…1cr1 9759  cardccrd 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-smo 8348  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-r1 9761  df-card 9936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator