MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dford2 Structured version   Visualization version   GIF version

Theorem dford2 9689
Description: Assuming ax-reg 9661, an ordinal is a transitive class on which inclusion satisfies trichotomy. (Contributed by Scott Fenton, 27-Oct-2010.)
Assertion
Ref Expression
dford2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dford2
StepHypRef Expression
1 df-ord 6398 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
2 zfregfr 9674 . . . . 5 E Fr 𝐴
3 dfwe2 7809 . . . . 5 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
42, 3mpbiran 708 . . . 4 ( E We 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
5 epel 5602 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 biid 261 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
7 epel 5602 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
85, 6, 73orbi123i 1156 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
982ralbii 3134 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
104, 9bitri 275 . . 3 ( E We 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
1110anbi2i 622 . 2 ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
121, 11bitri 275 1 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3o 1086  wral 3067   class class class wbr 5166  Tr wtr 5283   E cep 5598   Fr wfr 5649   We wwe 5651  Ord word 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398
This theorem is referenced by:  ordelordALT  44508  ordelordALTVD  44838
  Copyright terms: Public domain W3C validator