MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dford2 Structured version   Visualization version   GIF version

Theorem dford2 9611
Description: Assuming ax-reg 9583, an ordinal is a transitive class on which inclusion satisfies trichotomy. (Contributed by Scott Fenton, 27-Oct-2010.)
Assertion
Ref Expression
dford2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dford2
StepHypRef Expression
1 df-ord 6357 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
2 zfregfr 9596 . . . . 5 E Fr 𝐴
3 dfwe2 7754 . . . . 5 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
42, 3mpbiran 706 . . . 4 ( E We 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
5 epel 5573 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 biid 261 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
7 epel 5573 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
85, 6, 73orbi123i 1153 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
982ralbii 3120 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
104, 9bitri 275 . . 3 ( E We 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
1110anbi2i 622 . 2 ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
121, 11bitri 275 1 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3o 1083  wral 3053   class class class wbr 5138  Tr wtr 5255   E cep 5569   Fr wfr 5618   We wwe 5620  Ord word 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718  ax-reg 9583
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-ord 6357
This theorem is referenced by:  ordelordALT  43787  ordelordALTVD  44117
  Copyright terms: Public domain W3C validator