Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford5reg | Structured version Visualization version GIF version |
Description: Given ax-reg 9351, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.) |
Ref | Expression |
---|---|
dford5reg | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6269 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | zfregfr 9363 | . . . 4 ⊢ E Fr 𝐴 | |
3 | df-we 5546 | . . . 4 ⊢ ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ E Or 𝐴)) | |
4 | 2, 3 | mpbiran 706 | . . 3 ⊢ ( E We 𝐴 ↔ E Or 𝐴) |
5 | 4 | anbi2i 623 | . 2 ⊢ ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
6 | 1, 5 | bitri 274 | 1 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 Tr wtr 5191 E cep 5494 Or wor 5502 Fr wfr 5541 We wwe 5543 Ord word 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-fr 5544 df-we 5546 df-ord 6269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |