![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford5reg | Structured version Visualization version GIF version |
Description: Given ax-reg 9616, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.) |
Ref | Expression |
---|---|
dford5reg | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6372 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | zfregfr 9629 | . . . 4 ⊢ E Fr 𝐴 | |
3 | df-we 5635 | . . . 4 ⊢ ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ E Or 𝐴)) | |
4 | 2, 3 | mpbiran 708 | . . 3 ⊢ ( E We 𝐴 ↔ E Or 𝐴) |
5 | 4 | anbi2i 622 | . 2 ⊢ ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
6 | 1, 5 | bitri 275 | 1 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 Tr wtr 5265 E cep 5581 Or wor 5589 Fr wfr 5630 We wwe 5632 Ord word 6368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-reg 9616 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-eprel 5582 df-fr 5633 df-we 5635 df-ord 6372 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |