Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford5reg | Structured version Visualization version GIF version |
Description: Given ax-reg 9281, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.) |
Ref | Expression |
---|---|
dford5reg | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6254 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | zfregfr 9293 | . . . 4 ⊢ E Fr 𝐴 | |
3 | df-we 5537 | . . . 4 ⊢ ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ E Or 𝐴)) | |
4 | 2, 3 | mpbiran 705 | . . 3 ⊢ ( E We 𝐴 ↔ E Or 𝐴) |
5 | 4 | anbi2i 622 | . 2 ⊢ ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
6 | 1, 5 | bitri 274 | 1 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 Tr wtr 5187 E cep 5485 Or wor 5493 Fr wfr 5532 We wwe 5534 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |