Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford5reg Structured version   Visualization version   GIF version

Theorem dford5reg 34749
Description: Given ax-reg 9586, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.)
Assertion
Ref Expression
dford5reg (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴))

Proof of Theorem dford5reg
StepHypRef Expression
1 df-ord 6367 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
2 zfregfr 9599 . . . 4 E Fr 𝐴
3 df-we 5633 . . . 4 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ E Or 𝐴))
42, 3mpbiran 707 . . 3 ( E We 𝐴 ↔ E Or 𝐴)
54anbi2i 623 . 2 ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐴 ∧ E Or 𝐴))
61, 5bitri 274 1 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  Tr wtr 5265   E cep 5579   Or wor 5587   Fr wfr 5628   We wwe 5630  Ord word 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-reg 9586
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-eprel 5580  df-fr 5631  df-we 5633  df-ord 6367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator