Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford5reg Structured version   Visualization version   GIF version

Theorem dford5reg 35777
Description: Given ax-reg 9552, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.)
Assertion
Ref Expression
dford5reg (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴))

Proof of Theorem dford5reg
StepHypRef Expression
1 df-ord 6338 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
2 zfregfr 9565 . . . 4 E Fr 𝐴
3 df-we 5596 . . . 4 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ E Or 𝐴))
42, 3mpbiran 709 . . 3 ( E We 𝐴 ↔ E Or 𝐴)
54anbi2i 623 . 2 ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐴 ∧ E Or 𝐴))
61, 5bitri 275 1 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  Tr wtr 5217   E cep 5540   Or wor 5548   Fr wfr 5591   We wwe 5593  Ord word 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-fr 5594  df-we 5596  df-ord 6338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator