| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dford5reg | Structured version Visualization version GIF version | ||
| Description: Given ax-reg 9606, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.) |
| Ref | Expression |
|---|---|
| dford5reg | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord 6355 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 2 | zfregfr 9619 | . . . 4 ⊢ E Fr 𝐴 | |
| 3 | df-we 5608 | . . . 4 ⊢ ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ E Or 𝐴)) | |
| 4 | 2, 3 | mpbiran 709 | . . 3 ⊢ ( E We 𝐴 ↔ E Or 𝐴) |
| 5 | 4 | anbi2i 623 | . 2 ⊢ ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 Tr wtr 5229 E cep 5552 Or wor 5560 Fr wfr 5603 We wwe 5605 Ord word 6351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-reg 9606 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-eprel 5553 df-fr 5606 df-we 5608 df-ord 6355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |