Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford5reg | Structured version Visualization version GIF version |
Description: Given ax-reg 9312, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.) |
Ref | Expression |
---|---|
dford5reg | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 6266 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | zfregfr 9324 | . . . 4 ⊢ E Fr 𝐴 | |
3 | df-we 5545 | . . . 4 ⊢ ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ E Or 𝐴)) | |
4 | 2, 3 | mpbiran 705 | . . 3 ⊢ ( E We 𝐴 ↔ E Or 𝐴) |
5 | 4 | anbi2i 622 | . 2 ⊢ ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
6 | 1, 5 | bitri 274 | 1 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 Tr wtr 5195 E cep 5493 Or wor 5501 Fr wfr 5540 We wwe 5542 Ord word 6262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-reg 9312 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-eprel 5494 df-fr 5543 df-we 5545 df-ord 6266 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |