MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord0 Structured version   Visualization version   GIF version

Theorem ord0 6448
Description: The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0 Ord ∅

Proof of Theorem ord0
StepHypRef Expression
1 tr0 5296 . 2 Tr ∅
2 we0 5695 . 2 E We ∅
3 df-ord 6398 . 2 (Ord ∅ ↔ (Tr ∅ ∧ E We ∅))
41, 2, 3mpbir2an 710 1 Ord ∅
Colors of variables: wff setvar class
Syntax hints:  c0 4352  Tr wtr 5283   E cep 5598   We wwe 5651  Ord word 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-tr 5284  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398
This theorem is referenced by:  0elon  6449  ord0eln0  6450  ordzsl  7882  smo0  8414  oicl  9598  alephgeom  10151  pw2bday  28436
  Copyright terms: Public domain W3C validator