| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord0 | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.) |
| Ref | Expression |
|---|---|
| ord0 | ⊢ Ord ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tr0 5214 | . 2 ⊢ Tr ∅ | |
| 2 | we0 5616 | . 2 ⊢ E We ∅ | |
| 3 | df-ord 6317 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ E We ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4282 Tr wtr 5202 E cep 5520 We wwe 5573 Ord word 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-tr 5203 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 |
| This theorem is referenced by: 0elon 6369 ord0eln0 6370 ordzsl 7784 smo0 8287 oicl 9426 alephgeom 9984 |
| Copyright terms: Public domain | W3C validator |