| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord0 | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.) |
| Ref | Expression |
|---|---|
| ord0 | ⊢ Ord ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tr0 5205 | . 2 ⊢ Tr ∅ | |
| 2 | we0 5606 | . 2 ⊢ E We ∅ | |
| 3 | df-ord 6304 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ E We ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4278 Tr wtr 5193 E cep 5510 We wwe 5563 Ord word 6300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-tr 5194 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 |
| This theorem is referenced by: 0elon 6356 ord0eln0 6357 ordzsl 7770 smo0 8273 oicl 9410 alephgeom 9968 |
| Copyright terms: Public domain | W3C validator |