MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord0 Structured version   Visualization version   GIF version

Theorem ord0 6365
Description: The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0 Ord ∅

Proof of Theorem ord0
StepHypRef Expression
1 tr0 5214 . 2 Tr ∅
2 we0 5618 . 2 E We ∅
3 df-ord 6314 . 2 (Ord ∅ ↔ (Tr ∅ ∧ E We ∅))
41, 2, 3mpbir2an 711 1 Ord ∅
Colors of variables: wff setvar class
Syntax hints:  c0 4286  Tr wtr 5202   E cep 5522   We wwe 5575  Ord word 6310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-tr 5203  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314
This theorem is referenced by:  0elon  6366  ord0eln0  6367  ordzsl  7785  smo0  8288  oicl  9440  alephgeom  9995
  Copyright terms: Public domain W3C validator