MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord0 Structured version   Visualization version   GIF version

Theorem ord0 6418
Description: The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0 Ord ∅

Proof of Theorem ord0
StepHypRef Expression
1 tr0 5279 . 2 Tr ∅
2 we0 5672 . 2 E We ∅
3 df-ord 6368 . 2 (Ord ∅ ↔ (Tr ∅ ∧ E We ∅))
41, 2, 3mpbir2an 710 1 Ord ∅
Colors of variables: wff setvar class
Syntax hints:  c0 4323  Tr wtr 5266   E cep 5580   We wwe 5631  Ord word 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-tr 5267  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368
This theorem is referenced by:  0elon  6419  ord0eln0  6420  ordzsl  7834  smo0  8358  oicl  9524  alephgeom  10077
  Copyright terms: Public domain W3C validator