![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ord0 | Structured version Visualization version GIF version |
Description: The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.) |
Ref | Expression |
---|---|
ord0 | ⊢ Ord ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tr0 5296 | . 2 ⊢ Tr ∅ | |
2 | we0 5695 | . 2 ⊢ E We ∅ | |
3 | df-ord 6398 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ E We ∅)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ Ord ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4352 Tr wtr 5283 E cep 5598 We wwe 5651 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 |
This theorem is referenced by: 0elon 6449 ord0eln0 6450 ordzsl 7882 smo0 8414 oicl 9598 alephgeom 10151 pw2bday 28436 |
Copyright terms: Public domain | W3C validator |