Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ord0 | Structured version Visualization version GIF version |
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.) |
Ref | Expression |
---|---|
ord0 | ⊢ Ord ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tr0 5172 | . 2 ⊢ Tr ∅ | |
2 | we0 5546 | . 2 ⊢ E We ∅ | |
3 | df-ord 6216 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ E We ∅)) | |
4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4237 Tr wtr 5161 E cep 5459 We wwe 5508 Ord word 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-tr 5162 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 |
This theorem is referenced by: 0elon 6266 ord0eln0 6267 ordzsl 7624 smo0 8095 oicl 9145 alephgeom 9696 |
Copyright terms: Public domain | W3C validator |