MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord0 Structured version   Visualization version   GIF version

Theorem ord0 6389
Description: The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0 Ord ∅

Proof of Theorem ord0
StepHypRef Expression
1 tr0 5230 . 2 Tr ∅
2 we0 5636 . 2 E We ∅
3 df-ord 6338 . 2 (Ord ∅ ↔ (Tr ∅ ∧ E We ∅))
41, 2, 3mpbir2an 711 1 Ord ∅
Colors of variables: wff setvar class
Syntax hints:  c0 4299  Tr wtr 5217   E cep 5540   We wwe 5593  Ord word 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-tr 5218  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338
This theorem is referenced by:  0elon  6390  ord0eln0  6391  ordzsl  7824  smo0  8330  oicl  9489  alephgeom  10042
  Copyright terms: Public domain W3C validator