Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ord0 | Structured version Visualization version GIF version |
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.) |
Ref | Expression |
---|---|
ord0 | ⊢ Ord ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tr0 5227 | . 2 ⊢ Tr ∅ | |
2 | we0 5620 | . 2 ⊢ E We ∅ | |
3 | df-ord 6310 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ E We ∅)) | |
4 | 1, 2, 3 | mpbir2an 709 | 1 ⊢ Ord ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4274 Tr wtr 5214 E cep 5528 We wwe 5579 Ord word 6306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-tr 5215 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-ord 6310 |
This theorem is referenced by: 0elon 6360 ord0eln0 6361 ordzsl 7764 smo0 8264 oicl 9391 alephgeom 9944 |
Copyright terms: Public domain | W3C validator |