| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord0 | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.) |
| Ref | Expression |
|---|---|
| ord0 | ⊢ Ord ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tr0 5214 | . 2 ⊢ Tr ∅ | |
| 2 | we0 5618 | . 2 ⊢ E We ∅ | |
| 3 | df-ord 6314 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ E We ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4286 Tr wtr 5202 E cep 5522 We wwe 5575 Ord word 6310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-tr 5203 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 |
| This theorem is referenced by: 0elon 6366 ord0eln0 6367 ordzsl 7785 smo0 8288 oicl 9440 alephgeom 9995 |
| Copyright terms: Public domain | W3C validator |