| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord0 | Structured version Visualization version GIF version | ||
| Description: The empty set is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 11-May-1994.) |
| Ref | Expression |
|---|---|
| ord0 | ⊢ Ord ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tr0 5242 | . 2 ⊢ Tr ∅ | |
| 2 | we0 5649 | . 2 ⊢ E We ∅ | |
| 3 | df-ord 6355 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ E We ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4308 Tr wtr 5229 E cep 5552 We wwe 5605 Ord word 6351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-tr 5230 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 |
| This theorem is referenced by: 0elon 6407 ord0eln0 6408 ordzsl 7840 smo0 8372 oicl 9543 alephgeom 10096 |
| Copyright terms: Public domain | W3C validator |