MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord0 Structured version   Visualization version   GIF version

Theorem ord0 6303
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0 Ord ∅

Proof of Theorem ord0
StepHypRef Expression
1 tr0 5198 . 2 Tr ∅
2 we0 5575 . 2 E We ∅
3 df-ord 6254 . 2 (Ord ∅ ↔ (Tr ∅ ∧ E We ∅))
41, 2, 3mpbir2an 707 1 Ord ∅
Colors of variables: wff setvar class
Syntax hints:  c0 4253  Tr wtr 5187   E cep 5485   We wwe 5534  Ord word 6250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-tr 5188  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254
This theorem is referenced by:  0elon  6304  ord0eln0  6305  ordzsl  7667  smo0  8160  oicl  9218  alephgeom  9769
  Copyright terms: Public domain W3C validator