Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ord0 | Structured version Visualization version GIF version |
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.) |
Ref | Expression |
---|---|
ord0 | ⊢ Ord ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tr0 5198 | . 2 ⊢ Tr ∅ | |
2 | we0 5575 | . 2 ⊢ E We ∅ | |
3 | df-ord 6254 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ E We ∅)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ Ord ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4253 Tr wtr 5187 E cep 5485 We wwe 5534 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: 0elon 6304 ord0eln0 6305 ordzsl 7667 smo0 8160 oicl 9218 alephgeom 9769 |
Copyright terms: Public domain | W3C validator |