![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordon | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
ordon | ⊢ Ord On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tron 6418 | . 2 ⊢ Tr On | |
2 | epweon 7810 | . 2 ⊢ E We On | |
3 | df-ord 6398 | . 2 ⊢ (Ord On ↔ (Tr On ∧ E We On)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ Ord On |
Colors of variables: wff setvar class |
Syntax hints: Tr wtr 5283 E cep 5598 We wwe 5651 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: onprc 7813 ssorduni 7814 ordeleqon 7817 ordsson 7818 onint 7826 ordsuci 7844 sucexeloniOLD 7846 suceloniOLD 7848 limon 7872 tfi 7890 ordom 7913 ordtypelem2 9588 hartogs 9613 card2on 9623 tskwe 10019 alephsmo 10171 ondomon 10632 dford3lem2 42984 dford3 42985 tfsconcatlem 43298 iunord 48768 |
Copyright terms: Public domain | W3C validator |