| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordon | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon | ⊢ Ord On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 6380 | . 2 ⊢ Tr On | |
| 2 | epweon 7774 | . 2 ⊢ E We On | |
| 3 | df-ord 6360 | . 2 ⊢ (Ord On ↔ (Tr On ∧ E We On)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord On |
| Colors of variables: wff setvar class |
| Syntax hints: Tr wtr 5234 E cep 5557 We wwe 5610 Ord word 6356 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 |
| This theorem is referenced by: onprc 7777 ssorduni 7778 ordeleqon 7781 ordsson 7782 onint 7789 ordsuci 7807 sucexeloniOLD 7809 suceloniOLD 7811 limon 7835 tfi 7853 ordom 7876 ordtypelem2 9538 hartogs 9563 card2on 9573 tskwe 9969 alephsmo 10121 ondomon 10582 dford3lem2 43018 dford3 43019 tfsconcatlem 43327 iunord 49507 |
| Copyright terms: Public domain | W3C validator |