Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordon | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
ordon | ⊢ Ord On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tron 6274 | . 2 ⊢ Tr On | |
2 | epweon 7603 | . 2 ⊢ E We On | |
3 | df-ord 6254 | . 2 ⊢ (Ord On ↔ (Tr On ∧ E We On)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ Ord On |
Colors of variables: wff setvar class |
Syntax hints: Tr wtr 5187 E cep 5485 We wwe 5534 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: onprc 7605 ssorduni 7606 ordeleqon 7609 ordsson 7610 onint 7617 suceloni 7635 limon 7658 tfi 7675 ordom 7697 ordtypelem2 9208 hartogs 9233 card2on 9243 tskwe 9639 alephsmo 9789 ondomon 10250 dford3lem2 40765 dford3 40766 iunord 46268 |
Copyright terms: Public domain | W3C validator |