| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordon | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon | ⊢ Ord On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 6329 | . 2 ⊢ Tr On | |
| 2 | epweon 7708 | . 2 ⊢ E We On | |
| 3 | df-ord 6309 | . 2 ⊢ (Ord On ↔ (Tr On ∧ E We On)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord On |
| Colors of variables: wff setvar class |
| Syntax hints: Tr wtr 5198 E cep 5515 We wwe 5568 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: onprc 7711 ssorduni 7712 ordeleqon 7715 ordsson 7716 onint 7723 ordsuci 7741 limon 7766 tfi 7783 ordom 7806 ordtypelem2 9405 hartogs 9430 card2on 9440 tskwe 9843 alephsmo 9993 ondomon 10454 dford3lem2 43066 dford3 43067 tfsconcatlem 43375 iunord 49714 |
| Copyright terms: Public domain | W3C validator |