| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordon | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon | ⊢ Ord On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 6336 | . 2 ⊢ Tr On | |
| 2 | epweon 7716 | . 2 ⊢ E We On | |
| 3 | df-ord 6316 | . 2 ⊢ (Ord On ↔ (Tr On ∧ E We On)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord On |
| Colors of variables: wff setvar class |
| Syntax hints: Tr wtr 5202 E cep 5520 We wwe 5573 Ord word 6312 Oncon0 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6316 df-on 6317 |
| This theorem is referenced by: onprc 7719 ssorduni 7720 ordeleqon 7723 ordsson 7724 onint 7731 ordsuci 7749 limon 7774 tfi 7791 ordom 7814 ordtypelem2 9414 hartogs 9439 card2on 9449 tskwe 9852 alephsmo 10002 ondomon 10463 dford3lem2 43147 dford3 43148 tfsconcatlem 43456 iunord 49804 |
| Copyright terms: Public domain | W3C validator |