MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordon Structured version   Visualization version   GIF version

Theorem ordon 7753
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon Ord On

Proof of Theorem ordon
StepHypRef Expression
1 tron 6355 . 2 Tr On
2 epweon 7751 . 2 E We On
3 df-ord 6335 . 2 (Ord On ↔ (Tr On ∧ E We On))
41, 2, 3mpbir2an 711 1 Ord On
Colors of variables: wff setvar class
Syntax hints:  Tr wtr 5214   E cep 5537   We wwe 5590  Ord word 6331  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by:  onprc  7754  ssorduni  7755  ordeleqon  7758  ordsson  7759  onint  7766  ordsuci  7784  sucexeloniOLD  7786  limon  7811  tfi  7829  ordom  7852  ordtypelem2  9472  hartogs  9497  card2on  9507  tskwe  9903  alephsmo  10055  ondomon  10516  dford3lem2  43016  dford3  43017  tfsconcatlem  43325  iunord  49662
  Copyright terms: Public domain W3C validator