| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordon | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon | ⊢ Ord On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 6334 | . 2 ⊢ Tr On | |
| 2 | epweon 7715 | . 2 ⊢ E We On | |
| 3 | df-ord 6314 | . 2 ⊢ (Ord On ↔ (Tr On ∧ E We On)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord On |
| Colors of variables: wff setvar class |
| Syntax hints: Tr wtr 5202 E cep 5522 We wwe 5575 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: onprc 7718 ssorduni 7719 ordeleqon 7722 ordsson 7723 onint 7730 ordsuci 7748 sucexeloniOLD 7750 limon 7775 tfi 7793 ordom 7816 ordtypelem2 9430 hartogs 9455 card2on 9465 tskwe 9865 alephsmo 10015 ondomon 10476 dford3lem2 43000 dford3 43001 tfsconcatlem 43309 iunord 49662 |
| Copyright terms: Public domain | W3C validator |