MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordon Structured version   Visualization version   GIF version

Theorem ordon 7812
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon Ord On

Proof of Theorem ordon
StepHypRef Expression
1 tron 6418 . 2 Tr On
2 epweon 7810 . 2 E We On
3 df-ord 6398 . 2 (Ord On ↔ (Tr On ∧ E We On))
41, 2, 3mpbir2an 710 1 Ord On
Colors of variables: wff setvar class
Syntax hints:  Tr wtr 5283   E cep 5598   We wwe 5651  Ord word 6394  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by:  onprc  7813  ssorduni  7814  ordeleqon  7817  ordsson  7818  onint  7826  ordsuci  7844  sucexeloniOLD  7846  suceloniOLD  7848  limon  7872  tfi  7890  ordom  7913  ordtypelem2  9588  hartogs  9613  card2on  9623  tskwe  10019  alephsmo  10171  ondomon  10632  dford3lem2  42984  dford3  42985  tfsconcatlem  43298  iunord  48768
  Copyright terms: Public domain W3C validator