![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordon | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
ordon | ⊢ Ord On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tron 6001 | . 2 ⊢ Tr On | |
2 | epweon 7262 | . 2 ⊢ E We On | |
3 | df-ord 5981 | . 2 ⊢ (Ord On ↔ (Tr On ∧ E We On)) | |
4 | 1, 2, 3 | mpbir2an 701 | 1 ⊢ Ord On |
Colors of variables: wff setvar class |
Syntax hints: Tr wtr 4989 E cep 5267 We wwe 5315 Ord word 5977 Oncon0 5978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-tr 4990 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-ord 5981 df-on 5982 |
This theorem is referenced by: onprc 7264 ssorduni 7265 ordeleqon 7268 ordsson 7269 onint 7275 suceloni 7293 limon 7316 tfi 7333 ordom 7354 ordtypelem2 8715 hartogs 8740 card2on 8750 tskwe 9111 alephsmo 9260 ondomon 9722 dford3lem2 38567 dford3 38568 iunord 43541 |
Copyright terms: Public domain | W3C validator |