MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordon Structured version   Visualization version   GIF version

Theorem ordon 7718
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon Ord On

Proof of Theorem ordon
StepHypRef Expression
1 tron 6336 . 2 Tr On
2 epweon 7716 . 2 E We On
3 df-ord 6316 . 2 (Ord On ↔ (Tr On ∧ E We On))
41, 2, 3mpbir2an 711 1 Ord On
Colors of variables: wff setvar class
Syntax hints:  Tr wtr 5202   E cep 5520   We wwe 5573  Ord word 6312  Oncon0 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6316  df-on 6317
This theorem is referenced by:  onprc  7719  ssorduni  7720  ordeleqon  7723  ordsson  7724  onint  7731  ordsuci  7749  limon  7774  tfi  7791  ordom  7814  ordtypelem2  9414  hartogs  9439  card2on  9449  tskwe  9852  alephsmo  10002  ondomon  10463  dford3lem2  43147  dford3  43148  tfsconcatlem  43456  iunord  49804
  Copyright terms: Public domain W3C validator