Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordon | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
ordon | ⊢ Ord On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tron 6289 | . 2 ⊢ Tr On | |
2 | epweon 7625 | . 2 ⊢ E We On | |
3 | df-ord 6269 | . 2 ⊢ (Ord On ↔ (Tr On ∧ E We On)) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ Ord On |
Colors of variables: wff setvar class |
Syntax hints: Tr wtr 5191 E cep 5494 We wwe 5543 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: onprc 7628 ssorduni 7629 ordeleqon 7632 ordsson 7633 onint 7640 sucexeloni 7658 suceloniOLD 7660 limon 7683 tfi 7700 ordom 7722 ordtypelem2 9278 hartogs 9303 card2on 9313 tskwe 9708 alephsmo 9858 ondomon 10319 dford3lem2 40849 dford3 40850 iunord 46382 |
Copyright terms: Public domain | W3C validator |