| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordon | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon | ⊢ Ord On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 6355 | . 2 ⊢ Tr On | |
| 2 | epweon 7751 | . 2 ⊢ E We On | |
| 3 | df-ord 6335 | . 2 ⊢ (Ord On ↔ (Tr On ∧ E We On)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ord On |
| Colors of variables: wff setvar class |
| Syntax hints: Tr wtr 5214 E cep 5537 We wwe 5590 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: onprc 7754 ssorduni 7755 ordeleqon 7758 ordsson 7759 onint 7766 ordsuci 7784 sucexeloniOLD 7786 limon 7811 tfi 7829 ordom 7852 ordtypelem2 9472 hartogs 9497 card2on 9507 tskwe 9903 alephsmo 10055 ondomon 10516 dford3lem2 43016 dford3 43017 tfsconcatlem 43325 iunord 49662 |
| Copyright terms: Public domain | W3C validator |