MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruina Structured version   Visualization version   GIF version

Theorem gruina 10754
Description: If a Grothendieck universe 𝑈 is nonempty, then the height of the ordinals in 𝑈 is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
gruina ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)

Proof of Theorem gruina
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4306 . . . 4 (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥𝑈)
2 0ss 4356 . . . . . . . . . 10 ∅ ⊆ 𝑥
3 gruss 10732 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑈)
42, 3mp3an3 1450 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝑈)
5 0elon 6371 . . . . . . . . 9 ∅ ∈ On
6 elin 3926 . . . . . . . . 9 (∅ ∈ (𝑈 ∩ On) ↔ (∅ ∈ 𝑈 ∧ ∅ ∈ On))
74, 5, 6sylanblrc 590 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ (𝑈 ∩ On))
8 gruina.1 . . . . . . . 8 𝐴 = (𝑈 ∩ On)
97, 8eleqtrrdi 2849 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝐴)
109ne0d 4295 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ≠ ∅)
1110expcom 414 . . . . 5 (𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1211exlimiv 1933 . . . 4 (∃𝑥 𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
131, 12sylbi 216 . . 3 (𝑈 ≠ ∅ → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1413impcom 408 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ≠ ∅)
15 grutr 10729 . . . . . . . 8 (𝑈 ∈ Univ → Tr 𝑈)
16 tron 6340 . . . . . . . 8 Tr On
17 trin 5234 . . . . . . . 8 ((Tr 𝑈 ∧ Tr On) → Tr (𝑈 ∩ On))
1815, 16, 17sylancl 586 . . . . . . 7 (𝑈 ∈ Univ → Tr (𝑈 ∩ On))
19 inss2 4189 . . . . . . . 8 (𝑈 ∩ On) ⊆ On
20 epweon 7709 . . . . . . . 8 E We On
21 wess 5620 . . . . . . . 8 ((𝑈 ∩ On) ⊆ On → ( E We On → E We (𝑈 ∩ On)))
2219, 20, 21mp2 9 . . . . . . 7 E We (𝑈 ∩ On)
23 df-ord 6320 . . . . . . 7 (Ord (𝑈 ∩ On) ↔ (Tr (𝑈 ∩ On) ∧ E We (𝑈 ∩ On)))
2418, 22, 23sylanblrc 590 . . . . . 6 (𝑈 ∈ Univ → Ord (𝑈 ∩ On))
25 inex1g 5276 . . . . . 6 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ V)
26 elon2 6328 . . . . . 6 ((𝑈 ∩ On) ∈ On ↔ (Ord (𝑈 ∩ On) ∧ (𝑈 ∩ On) ∈ V))
2724, 25, 26sylanbrc 583 . . . . 5 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ On)
288, 27eqeltrid 2842 . . . 4 (𝑈 ∈ Univ → 𝐴 ∈ On)
2928adantr 481 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On)
30 eloni 6327 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
31 ordirr 6335 . . . . . . 7 (Ord 𝐴 → ¬ 𝐴𝐴)
3230, 31syl 17 . . . . . 6 (𝐴 ∈ On → ¬ 𝐴𝐴)
33 elin 3926 . . . . . . . . 9 (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴𝑈𝐴 ∈ On))
3433biimpri 227 . . . . . . . 8 ((𝐴𝑈𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On))
3534, 8eleqtrrdi 2849 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → 𝐴𝐴)
3635expcom 414 . . . . . 6 (𝐴 ∈ On → (𝐴𝑈𝐴𝐴))
3732, 36mtod 197 . . . . 5 (𝐴 ∈ On → ¬ 𝐴𝑈)
3829, 37syl 17 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ 𝐴𝑈)
39 inss1 4188 . . . . . . . . . . . . . . . 16 (𝑈 ∩ On) ⊆ 𝑈
408, 39eqsstri 3978 . . . . . . . . . . . . . . 15 𝐴𝑈
4140sseli 3940 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥𝑈)
42 vpwex 5332 . . . . . . . . . . . . . . . 16 𝒫 𝑥 ∈ V
4342canth2 9074 . . . . . . . . . . . . . . 15 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥
4442pwex 5335 . . . . . . . . . . . . . . . . . 18 𝒫 𝒫 𝑥 ∈ V
4544cardid 10483 . . . . . . . . . . . . . . . . 17 (card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥
4645ensymi 8944 . . . . . . . . . . . . . . . 16 𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥)
4728adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ On)
48 grupw 10731 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
49 grupw 10731 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5048, 49syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5128adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → 𝐴 ∈ On)
52 endom 8919 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥 → (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)
5345, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥
54 cardon 9880 . . . . . . . . . . . . . . . . . . . . . 22 (card‘𝒫 𝒫 𝑥) ∈ On
55 grudomon 10753 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 ∈ Univ ∧ (card‘𝒫 𝒫 𝑥) ∈ On ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5654, 55mp3an2 1449 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ Univ ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5753, 56mpanr2 702 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
58 elin 3926 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On) ↔ ((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On))
5958biimpri 227 . . . . . . . . . . . . . . . . . . . . 21 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On))
6059, 8eleqtrrdi 2849 . . . . . . . . . . . . . . . . . . . 20 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
6157, 54, 60sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
62 onelss 6359 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ∈ 𝐴 → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴))
6351, 61, 62sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
6450, 63syldan 591 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
65 ssdomg 8940 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ⊆ 𝐴 → (card‘𝒫 𝒫 𝑥) ≼ 𝐴))
6647, 64, 65sylc 65 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ≼ 𝐴)
67 endomtr 8952 . . . . . . . . . . . . . . . 16 ((𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥) ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝐴) → 𝒫 𝒫 𝑥𝐴)
6846, 66, 67sylancr 587 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝐴)
69 sdomdomtr 9054 . . . . . . . . . . . . . . 15 ((𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥𝐴) → 𝒫 𝑥𝐴)
7043, 68, 69sylancr 587 . . . . . . . . . . . . . 14 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝐴)
7141, 70sylan2 593 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝒫 𝑥𝐴)
7271ralrimiva 3143 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝒫 𝑥𝐴)
73 inawinalem 10625 . . . . . . . . . . . 12 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
7428, 72, 73sylc 65 . . . . . . . . . . 11 (𝑈 ∈ Univ → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
7574adantr 481 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
76 winainflem 10629 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
7714, 29, 75, 76syl3anc 1371 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ω ⊆ 𝐴)
78 vex 3449 . . . . . . . . . . . . . . 15 𝑥 ∈ V
7978canth2 9074 . . . . . . . . . . . . . 14 𝑥 ≺ 𝒫 𝑥
80 sdomtr 9059 . . . . . . . . . . . . . 14 ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥𝐴) → 𝑥𝐴)
8179, 71, 80sylancr 587 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝑥𝐴)
8281ralrimiva 3143 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝑥𝐴)
83 iscard 9911 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
8428, 82, 83sylanbrc 583 . . . . . . . . . . 11 (𝑈 ∈ Univ → (card‘𝐴) = 𝐴)
85 cardlim 9908 . . . . . . . . . . . 12 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
86 sseq2 3970 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴))
87 limeq 6329 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴))
8886, 87bibi12d 345 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴)))
8985, 88mpbii 232 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9084, 89syl 17 . . . . . . . . . 10 (𝑈 ∈ Univ → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9190adantr 481 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9277, 91mpbid 231 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Lim 𝐴)
93 cflm 10186 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
9429, 92, 93syl2anc 584 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
95 cardon 9880 . . . . . . . . . . . 12 (card‘𝑦) ∈ On
96 eleq1 2825 . . . . . . . . . . . 12 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
9795, 96mpbiri 257 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
9897adantr 481 . . . . . . . . . 10 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
9998exlimiv 1933 . . . . . . . . 9 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
10099abssi 4027 . . . . . . . 8 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On
101 fvex 6855 . . . . . . . . . 10 (cf‘𝐴) ∈ V
10294, 101eqeltrrdi 2847 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
103 intex 5294 . . . . . . . . 9 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅ ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
104102, 103sylibr 233 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅)
105 onint 7725 . . . . . . . 8 (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
106100, 104, 105sylancr 587 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
10794, 106eqeltrd 2838 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
108 eqeq1 2740 . . . . . . . . 9 (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦)))
109108anbi1d 630 . . . . . . . 8 (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
110109exbidv 1924 . . . . . . 7 (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
111101, 110elab 3630 . . . . . 6 ((cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
112107, 111sylib 217 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
113 simp2rr 1243 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴 = 𝑦)
114 simp1l 1197 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑈 ∈ Univ)
115 simp2rl 1242 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝐴)
116115, 40sstrdi 3956 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
11740sseli 3940 . . . . . . . . . . 11 ((cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) ∈ 𝑈)
1181173ad2ant3 1135 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ∈ 𝑈)
119 simp2l 1199 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) = (card‘𝑦))
120 vex 3449 . . . . . . . . . . . 12 𝑦 ∈ V
121120cardid 10483 . . . . . . . . . . 11 (card‘𝑦) ≈ 𝑦
122119, 121eqbrtrdi 5144 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ≈ 𝑦)
123 gruen 10748 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑦𝑈 ∧ ((cf‘𝐴) ∈ 𝑈 ∧ (cf‘𝐴) ≈ 𝑦)) → 𝑦𝑈)
124114, 116, 118, 122, 123syl112anc 1374 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
125 gruuni 10736 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑦𝑈) → 𝑦𝑈)
126114, 124, 125syl2anc 584 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
127113, 126eqeltrd 2838 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴𝑈)
1281273exp 1119 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
129128exlimdv 1936 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
130112, 129mpd 15 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈))
13138, 130mtod 197 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ (cf‘𝐴) ∈ 𝐴)
132 cfon 10191 . . . . 5 (cf‘𝐴) ∈ On
133 cfle 10190 . . . . . 6 (cf‘𝐴) ⊆ 𝐴
134 onsseleq 6358 . . . . . 6 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ⊆ 𝐴 ↔ ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴)))
135133, 134mpbii 232 . . . . 5 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
136132, 135mpan 688 . . . 4 (𝐴 ∈ On → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
137136ord 862 . . 3 (𝐴 ∈ On → (¬ (cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) = 𝐴))
13829, 131, 137sylc 65 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = 𝐴)
13972adantr 481 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴 𝒫 𝑥𝐴)
140 elina 10623 . 2 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
14114, 138, 139, 140syl3anbrc 1343 1 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560   cuni 4865   cint 4907   class class class wbr 5105  Tr wtr 5222   E cep 5536   We wwe 5587  Ord word 6316  Oncon0 6317  Lim wlim 6318  cfv 6496  ωcom 7802  cen 8880  cdom 8881  csdm 8882  cardccrd 9871  cfccf 9873  Inacccina 10619  Univcgru 10726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-ac2 10399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-card 9875  df-cf 9877  df-ac 10052  df-ina 10621  df-gru 10727
This theorem is referenced by:  grur1a  10755  grur1  10756  grutsk  10758
  Copyright terms: Public domain W3C validator