MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruina Structured version   Visualization version   GIF version

Theorem gruina 10747
Description: If a Grothendieck universe 𝑈 is nonempty, then the height of the ordinals in 𝑈 is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
gruina ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)

Proof of Theorem gruina
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4312 . . . 4 (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥𝑈)
2 0ss 4359 . . . . . . . . . 10 ∅ ⊆ 𝑥
3 gruss 10725 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑈)
42, 3mp3an3 1452 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝑈)
5 0elon 6375 . . . . . . . . 9 ∅ ∈ On
6 elin 3927 . . . . . . . . 9 (∅ ∈ (𝑈 ∩ On) ↔ (∅ ∈ 𝑈 ∧ ∅ ∈ On))
74, 5, 6sylanblrc 590 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ (𝑈 ∩ On))
8 gruina.1 . . . . . . . 8 𝐴 = (𝑈 ∩ On)
97, 8eleqtrrdi 2839 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝐴)
109ne0d 4301 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ≠ ∅)
1110expcom 413 . . . . 5 (𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1211exlimiv 1930 . . . 4 (∃𝑥 𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
131, 12sylbi 217 . . 3 (𝑈 ≠ ∅ → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1413impcom 407 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ≠ ∅)
15 grutr 10722 . . . . . . . 8 (𝑈 ∈ Univ → Tr 𝑈)
16 tron 6343 . . . . . . . 8 Tr On
17 trin 5221 . . . . . . . 8 ((Tr 𝑈 ∧ Tr On) → Tr (𝑈 ∩ On))
1815, 16, 17sylancl 586 . . . . . . 7 (𝑈 ∈ Univ → Tr (𝑈 ∩ On))
19 inss2 4197 . . . . . . . 8 (𝑈 ∩ On) ⊆ On
20 epweon 7731 . . . . . . . 8 E We On
21 wess 5617 . . . . . . . 8 ((𝑈 ∩ On) ⊆ On → ( E We On → E We (𝑈 ∩ On)))
2219, 20, 21mp2 9 . . . . . . 7 E We (𝑈 ∩ On)
23 df-ord 6323 . . . . . . 7 (Ord (𝑈 ∩ On) ↔ (Tr (𝑈 ∩ On) ∧ E We (𝑈 ∩ On)))
2418, 22, 23sylanblrc 590 . . . . . 6 (𝑈 ∈ Univ → Ord (𝑈 ∩ On))
25 inex1g 5269 . . . . . 6 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ V)
26 elon2 6331 . . . . . 6 ((𝑈 ∩ On) ∈ On ↔ (Ord (𝑈 ∩ On) ∧ (𝑈 ∩ On) ∈ V))
2724, 25, 26sylanbrc 583 . . . . 5 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ On)
288, 27eqeltrid 2832 . . . 4 (𝑈 ∈ Univ → 𝐴 ∈ On)
2928adantr 480 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On)
30 eloni 6330 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
31 ordirr 6338 . . . . . . 7 (Ord 𝐴 → ¬ 𝐴𝐴)
3230, 31syl 17 . . . . . 6 (𝐴 ∈ On → ¬ 𝐴𝐴)
33 elin 3927 . . . . . . . . 9 (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴𝑈𝐴 ∈ On))
3433biimpri 228 . . . . . . . 8 ((𝐴𝑈𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On))
3534, 8eleqtrrdi 2839 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → 𝐴𝐴)
3635expcom 413 . . . . . 6 (𝐴 ∈ On → (𝐴𝑈𝐴𝐴))
3732, 36mtod 198 . . . . 5 (𝐴 ∈ On → ¬ 𝐴𝑈)
3829, 37syl 17 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ 𝐴𝑈)
39 inss1 4196 . . . . . . . . . . . . . . . 16 (𝑈 ∩ On) ⊆ 𝑈
408, 39eqsstri 3990 . . . . . . . . . . . . . . 15 𝐴𝑈
4140sseli 3939 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥𝑈)
42 vpwex 5327 . . . . . . . . . . . . . . . 16 𝒫 𝑥 ∈ V
4342canth2 9071 . . . . . . . . . . . . . . 15 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥
4442pwex 5330 . . . . . . . . . . . . . . . . . 18 𝒫 𝒫 𝑥 ∈ V
4544cardid 10476 . . . . . . . . . . . . . . . . 17 (card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥
4645ensymi 8952 . . . . . . . . . . . . . . . 16 𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥)
4728adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ On)
48 grupw 10724 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
49 grupw 10724 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5048, 49syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5128adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → 𝐴 ∈ On)
52 endom 8927 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥 → (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)
5345, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥
54 cardon 9873 . . . . . . . . . . . . . . . . . . . . . 22 (card‘𝒫 𝒫 𝑥) ∈ On
55 grudomon 10746 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 ∈ Univ ∧ (card‘𝒫 𝒫 𝑥) ∈ On ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5654, 55mp3an2 1451 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ Univ ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5753, 56mpanr2 704 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
58 elin 3927 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On) ↔ ((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On))
5958biimpri 228 . . . . . . . . . . . . . . . . . . . . 21 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On))
6059, 8eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . 20 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
6157, 54, 60sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
62 onelss 6362 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ∈ 𝐴 → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴))
6351, 61, 62sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
6450, 63syldan 591 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
65 ssdomg 8948 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ⊆ 𝐴 → (card‘𝒫 𝒫 𝑥) ≼ 𝐴))
6647, 64, 65sylc 65 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ≼ 𝐴)
67 endomtr 8960 . . . . . . . . . . . . . . . 16 ((𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥) ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝐴) → 𝒫 𝒫 𝑥𝐴)
6846, 66, 67sylancr 587 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝐴)
69 sdomdomtr 9051 . . . . . . . . . . . . . . 15 ((𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥𝐴) → 𝒫 𝑥𝐴)
7043, 68, 69sylancr 587 . . . . . . . . . . . . . 14 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝐴)
7141, 70sylan2 593 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝒫 𝑥𝐴)
7271ralrimiva 3125 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝒫 𝑥𝐴)
73 inawinalem 10618 . . . . . . . . . . . 12 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
7428, 72, 73sylc 65 . . . . . . . . . . 11 (𝑈 ∈ Univ → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
7574adantr 480 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
76 winainflem 10622 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
7714, 29, 75, 76syl3anc 1373 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ω ⊆ 𝐴)
78 vex 3448 . . . . . . . . . . . . . . 15 𝑥 ∈ V
7978canth2 9071 . . . . . . . . . . . . . 14 𝑥 ≺ 𝒫 𝑥
80 sdomtr 9056 . . . . . . . . . . . . . 14 ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥𝐴) → 𝑥𝐴)
8179, 71, 80sylancr 587 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝑥𝐴)
8281ralrimiva 3125 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝑥𝐴)
83 iscard 9904 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
8428, 82, 83sylanbrc 583 . . . . . . . . . . 11 (𝑈 ∈ Univ → (card‘𝐴) = 𝐴)
85 cardlim 9901 . . . . . . . . . . . 12 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
86 sseq2 3970 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴))
87 limeq 6332 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴))
8886, 87bibi12d 345 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴)))
8985, 88mpbii 233 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9084, 89syl 17 . . . . . . . . . 10 (𝑈 ∈ Univ → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9190adantr 480 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9277, 91mpbid 232 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Lim 𝐴)
93 cflm 10179 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
9429, 92, 93syl2anc 584 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
95 cardon 9873 . . . . . . . . . . . 12 (card‘𝑦) ∈ On
96 eleq1 2816 . . . . . . . . . . . 12 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
9795, 96mpbiri 258 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
9897adantr 480 . . . . . . . . . 10 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
9998exlimiv 1930 . . . . . . . . 9 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
10099abssi 4029 . . . . . . . 8 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On
101 fvex 6853 . . . . . . . . . 10 (cf‘𝐴) ∈ V
10294, 101eqeltrrdi 2837 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
103 intex 5294 . . . . . . . . 9 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅ ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
104102, 103sylibr 234 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅)
105 onint 7746 . . . . . . . 8 (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
106100, 104, 105sylancr 587 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
10794, 106eqeltrd 2828 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
108 eqeq1 2733 . . . . . . . . 9 (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦)))
109108anbi1d 631 . . . . . . . 8 (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
110109exbidv 1921 . . . . . . 7 (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
111101, 110elab 3643 . . . . . 6 ((cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
112107, 111sylib 218 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
113 simp2rr 1244 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴 = 𝑦)
114 simp1l 1198 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑈 ∈ Univ)
115 simp2rl 1243 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝐴)
116115, 40sstrdi 3956 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
11740sseli 3939 . . . . . . . . . . 11 ((cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) ∈ 𝑈)
1181173ad2ant3 1135 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ∈ 𝑈)
119 simp2l 1200 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) = (card‘𝑦))
120 vex 3448 . . . . . . . . . . . 12 𝑦 ∈ V
121120cardid 10476 . . . . . . . . . . 11 (card‘𝑦) ≈ 𝑦
122119, 121eqbrtrdi 5141 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ≈ 𝑦)
123 gruen 10741 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑦𝑈 ∧ ((cf‘𝐴) ∈ 𝑈 ∧ (cf‘𝐴) ≈ 𝑦)) → 𝑦𝑈)
124114, 116, 118, 122, 123syl112anc 1376 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
125 gruuni 10729 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑦𝑈) → 𝑦𝑈)
126114, 124, 125syl2anc 584 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
127113, 126eqeltrd 2828 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴𝑈)
1281273exp 1119 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
129128exlimdv 1933 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
130112, 129mpd 15 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈))
13138, 130mtod 198 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ (cf‘𝐴) ∈ 𝐴)
132 cfon 10184 . . . . 5 (cf‘𝐴) ∈ On
133 cfle 10183 . . . . . 6 (cf‘𝐴) ⊆ 𝐴
134 onsseleq 6361 . . . . . 6 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ⊆ 𝐴 ↔ ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴)))
135133, 134mpbii 233 . . . . 5 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
136132, 135mpan 690 . . . 4 (𝐴 ∈ On → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
137136ord 864 . . 3 (𝐴 ∈ On → (¬ (cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) = 𝐴))
13829, 131, 137sylc 65 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = 𝐴)
13972adantr 480 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴 𝒫 𝑥𝐴)
140 elina 10616 . 2 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
14114, 138, 139, 140syl3anbrc 1344 1 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559   cuni 4867   cint 4906   class class class wbr 5102  Tr wtr 5209   E cep 5530   We wwe 5583  Ord word 6319  Oncon0 6320  Lim wlim 6321  cfv 6499  ωcom 7822  cen 8892  cdom 8893  csdm 8894  cardccrd 9864  cfccf 9866  Inacccina 10612  Univcgru 10719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-card 9868  df-cf 9870  df-ac 10045  df-ina 10614  df-gru 10720
This theorem is referenced by:  grur1a  10748  grur1  10749  grutsk  10751
  Copyright terms: Public domain W3C validator