Step | Hyp | Ref
| Expression |
1 | | n0 4280 |
. . . 4
⊢ (𝑈 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑈) |
2 | | 0ss 4330 |
. . . . . . . . . 10
⊢ ∅
⊆ 𝑥 |
3 | | gruss 10552 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑈) |
4 | 2, 3 | mp3an3 1449 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∅ ∈ 𝑈) |
5 | | 0elon 6319 |
. . . . . . . . 9
⊢ ∅
∈ On |
6 | | elin 3903 |
. . . . . . . . 9
⊢ (∅
∈ (𝑈 ∩ On) ↔
(∅ ∈ 𝑈 ∧
∅ ∈ On)) |
7 | 4, 5, 6 | sylanblrc 590 |
. . . . . . . 8
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∅ ∈ (𝑈 ∩ On)) |
8 | | gruina.1 |
. . . . . . . 8
⊢ 𝐴 = (𝑈 ∩ On) |
9 | 7, 8 | eleqtrrdi 2850 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∅ ∈ 𝐴) |
10 | 9 | ne0d 4269 |
. . . . . 6
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ≠ ∅) |
11 | 10 | expcom 414 |
. . . . 5
⊢ (𝑥 ∈ 𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅)) |
12 | 11 | exlimiv 1933 |
. . . 4
⊢
(∃𝑥 𝑥 ∈ 𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅)) |
13 | 1, 12 | sylbi 216 |
. . 3
⊢ (𝑈 ≠ ∅ → (𝑈 ∈ Univ → 𝐴 ≠ ∅)) |
14 | 13 | impcom 408 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ≠ ∅) |
15 | | grutr 10549 |
. . . . . . . 8
⊢ (𝑈 ∈ Univ → Tr 𝑈) |
16 | | tron 6289 |
. . . . . . . 8
⊢ Tr
On |
17 | | trin 5201 |
. . . . . . . 8
⊢ ((Tr
𝑈 ∧ Tr On) → Tr
(𝑈 ∩
On)) |
18 | 15, 16, 17 | sylancl 586 |
. . . . . . 7
⊢ (𝑈 ∈ Univ → Tr (𝑈 ∩ On)) |
19 | | inss2 4163 |
. . . . . . . 8
⊢ (𝑈 ∩ On) ⊆
On |
20 | | epweon 7625 |
. . . . . . . 8
⊢ E We
On |
21 | | wess 5576 |
. . . . . . . 8
⊢ ((𝑈 ∩ On) ⊆ On → ( E
We On → E We (𝑈 ∩
On))) |
22 | 19, 20, 21 | mp2 9 |
. . . . . . 7
⊢ E We
(𝑈 ∩
On) |
23 | | df-ord 6269 |
. . . . . . 7
⊢ (Ord
(𝑈 ∩ On) ↔ (Tr
(𝑈 ∩ On) ∧ E We
(𝑈 ∩
On))) |
24 | 18, 22, 23 | sylanblrc 590 |
. . . . . 6
⊢ (𝑈 ∈ Univ → Ord (𝑈 ∩ On)) |
25 | | inex1g 5243 |
. . . . . 6
⊢ (𝑈 ∈ Univ → (𝑈 ∩ On) ∈
V) |
26 | | elon2 6277 |
. . . . . 6
⊢ ((𝑈 ∩ On) ∈ On ↔ (Ord
(𝑈 ∩ On) ∧ (𝑈 ∩ On) ∈
V)) |
27 | 24, 25, 26 | sylanbrc 583 |
. . . . 5
⊢ (𝑈 ∈ Univ → (𝑈 ∩ On) ∈
On) |
28 | 8, 27 | eqeltrid 2843 |
. . . 4
⊢ (𝑈 ∈ Univ → 𝐴 ∈ On) |
29 | 28 | adantr 481 |
. . 3
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On) |
30 | | eloni 6276 |
. . . . . . 7
⊢ (𝐴 ∈ On → Ord 𝐴) |
31 | | ordirr 6284 |
. . . . . . 7
⊢ (Ord
𝐴 → ¬ 𝐴 ∈ 𝐴) |
32 | 30, 31 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴) |
33 | | elin 3903 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On)) |
34 | 33 | biimpri 227 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On)) |
35 | 34, 8 | eleqtrrdi 2850 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝐴 ∈ 𝐴) |
36 | 35 | expcom 414 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐴 ∈ 𝑈 → 𝐴 ∈ 𝐴)) |
37 | 32, 36 | mtod 197 |
. . . . 5
⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝑈) |
38 | 29, 37 | syl 17 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬
𝐴 ∈ 𝑈) |
39 | | inss1 4162 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 ∩ On) ⊆ 𝑈 |
40 | 8, 39 | eqsstri 3955 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 ⊆ 𝑈 |
41 | 40 | sseli 3917 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑈) |
42 | | vpwex 5300 |
. . . . . . . . . . . . . . . 16
⊢ 𝒫
𝑥 ∈ V |
43 | 42 | canth2 8917 |
. . . . . . . . . . . . . . 15
⊢ 𝒫
𝑥 ≺ 𝒫
𝒫 𝑥 |
44 | 42 | pwex 5303 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝒫
𝒫 𝑥 ∈
V |
45 | 44 | cardid 10303 |
. . . . . . . . . . . . . . . . 17
⊢
(card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥 |
46 | 45 | ensymi 8790 |
. . . . . . . . . . . . . . . 16
⊢ 𝒫
𝒫 𝑥 ≈
(card‘𝒫 𝒫 𝑥) |
47 | 28 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ On) |
48 | | grupw 10551 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
49 | | grupw 10551 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝑥 ∈ 𝑈) → 𝒫 𝒫 𝑥 ∈ 𝑈) |
50 | 48, 49 | syldan 591 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝒫 𝑥 ∈ 𝑈) |
51 | 28 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝒫 𝑥 ∈ 𝑈) → 𝐴 ∈ On) |
52 | | endom 8767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥 → (card‘𝒫
𝒫 𝑥) ≼
𝒫 𝒫 𝑥) |
53 | 45, 52 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥 |
54 | | cardon 9702 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(card‘𝒫 𝒫 𝑥) ∈ On |
55 | | grudomon 10573 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑈 ∈ Univ ∧
(card‘𝒫 𝒫 𝑥) ∈ On ∧ (𝒫 𝒫 𝑥 ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫
𝑥)) →
(card‘𝒫 𝒫 𝑥) ∈ 𝑈) |
56 | 54, 55 | mp3an2 1448 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑈 ∈ Univ ∧ (𝒫
𝒫 𝑥 ∈ 𝑈 ∧ (card‘𝒫
𝒫 𝑥) ≼
𝒫 𝒫 𝑥))
→ (card‘𝒫 𝒫 𝑥) ∈ 𝑈) |
57 | 53, 56 | mpanr2 701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝒫 𝑥 ∈ 𝑈) → (card‘𝒫
𝒫 𝑥) ∈ 𝑈) |
58 | | elin 3903 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On) ↔ ((card‘𝒫
𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫
𝒫 𝑥) ∈
On)) |
59 | 58 | biimpri 227 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) →
(card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On)) |
60 | 59, 8 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) →
(card‘𝒫 𝒫 𝑥) ∈ 𝐴) |
61 | 57, 54, 60 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝒫 𝑥 ∈ 𝑈) → (card‘𝒫
𝒫 𝑥) ∈ 𝐴) |
62 | | onelss 6308 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ On →
((card‘𝒫 𝒫 𝑥) ∈ 𝐴 → (card‘𝒫 𝒫
𝑥) ⊆ 𝐴)) |
63 | 51, 61, 62 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝒫 𝑥 ∈ 𝑈) → (card‘𝒫
𝒫 𝑥) ⊆ 𝐴) |
64 | 50, 63 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (card‘𝒫 𝒫
𝑥) ⊆ 𝐴) |
65 | | ssdomg 8786 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On →
((card‘𝒫 𝒫 𝑥) ⊆ 𝐴 → (card‘𝒫 𝒫
𝑥) ≼ 𝐴)) |
66 | 47, 64, 65 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (card‘𝒫 𝒫
𝑥) ≼ 𝐴) |
67 | | endomtr 8798 |
. . . . . . . . . . . . . . . 16
⊢
((𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫
𝑥) ∧
(card‘𝒫 𝒫 𝑥) ≼ 𝐴) → 𝒫 𝒫 𝑥 ≼ 𝐴) |
68 | 46, 66, 67 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝒫 𝑥 ≼ 𝐴) |
69 | | sdomdomtr 8897 |
. . . . . . . . . . . . . . 15
⊢
((𝒫 𝑥
≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥 ≼ 𝐴) → 𝒫 𝑥 ≺ 𝐴) |
70 | 43, 68, 69 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ≺ 𝐴) |
71 | 41, 70 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → 𝒫 𝑥 ≺ 𝐴) |
72 | 71 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ Univ →
∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) |
73 | | inawinalem 10445 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
74 | 28, 72, 73 | sylc 65 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ Univ →
∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) |
75 | 74 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) |
76 | | winainflem 10449 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → ω ⊆ 𝐴) |
77 | 14, 29, 75, 76 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ω
⊆ 𝐴) |
78 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
79 | 78 | canth2 8917 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ≺ 𝒫 𝑥 |
80 | | sdomtr 8902 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥 ≺ 𝐴) → 𝑥 ≺ 𝐴) |
81 | 79, 71, 80 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → 𝑥 ≺ 𝐴) |
82 | 81 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ Univ →
∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴) |
83 | | iscard 9733 |
. . . . . . . . . . . 12
⊢
((card‘𝐴) =
𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
84 | 28, 82, 83 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ Univ →
(card‘𝐴) = 𝐴) |
85 | | cardlim 9730 |
. . . . . . . . . . . 12
⊢ (ω
⊆ (card‘𝐴)
↔ Lim (card‘𝐴)) |
86 | | sseq2 3947 |
. . . . . . . . . . . . 13
⊢
((card‘𝐴) =
𝐴 → (ω ⊆
(card‘𝐴) ↔
ω ⊆ 𝐴)) |
87 | | limeq 6278 |
. . . . . . . . . . . . 13
⊢
((card‘𝐴) =
𝐴 → (Lim
(card‘𝐴) ↔ Lim
𝐴)) |
88 | 86, 87 | bibi12d 346 |
. . . . . . . . . . . 12
⊢
((card‘𝐴) =
𝐴 → ((ω ⊆
(card‘𝐴) ↔ Lim
(card‘𝐴)) ↔
(ω ⊆ 𝐴 ↔
Lim 𝐴))) |
89 | 85, 88 | mpbii 232 |
. . . . . . . . . . 11
⊢
((card‘𝐴) =
𝐴 → (ω ⊆
𝐴 ↔ Lim 𝐴)) |
90 | 84, 89 | syl 17 |
. . . . . . . . . 10
⊢ (𝑈 ∈ Univ → (ω
⊆ 𝐴 ↔ Lim 𝐴)) |
91 | 90 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (ω
⊆ 𝐴 ↔ Lim 𝐴)) |
92 | 77, 91 | mpbid 231 |
. . . . . . . 8
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Lim 𝐴) |
93 | | cflm 10006 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ Lim 𝐴) → (cf‘𝐴) = ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
94 | 29, 92, 93 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
95 | | cardon 9702 |
. . . . . . . . . . . 12
⊢
(card‘𝑦)
∈ On |
96 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On)) |
97 | 95, 96 | mpbiri 257 |
. . . . . . . . . . 11
⊢ (𝑥 = (card‘𝑦) → 𝑥 ∈ On) |
98 | 97 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → 𝑥 ∈ On) |
99 | 98 | exlimiv 1933 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → 𝑥 ∈ On) |
100 | 99 | abssi 4003 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ On |
101 | | fvex 6787 |
. . . . . . . . . 10
⊢
(cf‘𝐴) ∈
V |
102 | 94, 101 | eqeltrrdi 2848 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∈ V) |
103 | | intex 5261 |
. . . . . . . . 9
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ≠ ∅ ↔ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∈ V) |
104 | 102, 103 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ≠
∅) |
105 | | onint 7640 |
. . . . . . . 8
⊢ (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ≠ ∅) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
106 | 100, 104,
105 | sylancr 587 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
107 | 94, 106 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
108 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦))) |
109 | 108 | anbi1d 630 |
. . . . . . . 8
⊢ (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)))) |
110 | 109 | exbidv 1924 |
. . . . . . 7
⊢ (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)))) |
111 | 101, 110 | elab 3609 |
. . . . . 6
⊢
((cf‘𝐴) ∈
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))) |
112 | 107, 111 | sylib 217 |
. . . . 5
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))) |
113 | | simp2rr 1242 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴 = ∪ 𝑦) |
114 | | simp1l 1196 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑈 ∈ Univ) |
115 | | simp2rl 1241 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦 ⊆ 𝐴) |
116 | 115, 40 | sstrdi 3933 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦 ⊆ 𝑈) |
117 | 40 | sseli 3917 |
. . . . . . . . . . 11
⊢
((cf‘𝐴) ∈
𝐴 → (cf‘𝐴) ∈ 𝑈) |
118 | 117 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ∈ 𝑈) |
119 | | simp2l 1198 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) = (card‘𝑦)) |
120 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
121 | 120 | cardid 10303 |
. . . . . . . . . . 11
⊢
(card‘𝑦)
≈ 𝑦 |
122 | 119, 121 | eqbrtrdi 5113 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ≈ 𝑦) |
123 | | gruen 10568 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑦 ⊆ 𝑈 ∧ ((cf‘𝐴) ∈ 𝑈 ∧ (cf‘𝐴) ≈ 𝑦)) → 𝑦 ∈ 𝑈) |
124 | 114, 116,
118, 122, 123 | syl112anc 1373 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦 ∈ 𝑈) |
125 | | gruuni 10556 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑦 ∈ 𝑈) → ∪ 𝑦 ∈ 𝑈) |
126 | 114, 124,
125 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → ∪ 𝑦 ∈ 𝑈) |
127 | 113, 126 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴 ∈ 𝑈) |
128 | 127 | 3exp 1118 |
. . . . . 6
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → ((cf‘𝐴) ∈ 𝐴 → 𝐴 ∈ 𝑈))) |
129 | 128 | exlimdv 1936 |
. . . . 5
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → ((cf‘𝐴) ∈ 𝐴 → 𝐴 ∈ 𝑈))) |
130 | 112, 129 | mpd 15 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
((cf‘𝐴) ∈ 𝐴 → 𝐴 ∈ 𝑈)) |
131 | 38, 130 | mtod 197 |
. . 3
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬
(cf‘𝐴) ∈ 𝐴) |
132 | | cfon 10011 |
. . . . 5
⊢
(cf‘𝐴) ∈
On |
133 | | cfle 10010 |
. . . . . 6
⊢
(cf‘𝐴) ⊆
𝐴 |
134 | | onsseleq 6307 |
. . . . . 6
⊢
(((cf‘𝐴)
∈ On ∧ 𝐴 ∈
On) → ((cf‘𝐴)
⊆ 𝐴 ↔
((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))) |
135 | 133, 134 | mpbii 232 |
. . . . 5
⊢
(((cf‘𝐴)
∈ On ∧ 𝐴 ∈
On) → ((cf‘𝐴)
∈ 𝐴 ∨
(cf‘𝐴) = 𝐴)) |
136 | 132, 135 | mpan 687 |
. . . 4
⊢ (𝐴 ∈ On →
((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴)) |
137 | 136 | ord 861 |
. . 3
⊢ (𝐴 ∈ On → (¬
(cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) = 𝐴)) |
138 | 29, 131, 137 | sylc 65 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(cf‘𝐴) = 𝐴) |
139 | 72 | adantr 481 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) |
140 | | elina 10443 |
. 2
⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧
(cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
141 | 14, 138, 139, 140 | syl3anbrc 1342 |
1
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc) |