MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruina Structured version   Visualization version   GIF version

Theorem gruina 10709
Description: If a Grothendieck universe 𝑈 is nonempty, then the height of the ordinals in 𝑈 is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
gruina ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)

Proof of Theorem gruina
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4300 . . . 4 (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥𝑈)
2 0ss 4347 . . . . . . . . . 10 ∅ ⊆ 𝑥
3 gruss 10687 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑈)
42, 3mp3an3 1452 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝑈)
5 0elon 6361 . . . . . . . . 9 ∅ ∈ On
6 elin 3913 . . . . . . . . 9 (∅ ∈ (𝑈 ∩ On) ↔ (∅ ∈ 𝑈 ∧ ∅ ∈ On))
74, 5, 6sylanblrc 590 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ (𝑈 ∩ On))
8 gruina.1 . . . . . . . 8 𝐴 = (𝑈 ∩ On)
97, 8eleqtrrdi 2842 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝐴)
109ne0d 4289 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ≠ ∅)
1110expcom 413 . . . . 5 (𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1211exlimiv 1931 . . . 4 (∃𝑥 𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
131, 12sylbi 217 . . 3 (𝑈 ≠ ∅ → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1413impcom 407 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ≠ ∅)
15 grutr 10684 . . . . . . . 8 (𝑈 ∈ Univ → Tr 𝑈)
16 tron 6329 . . . . . . . 8 Tr On
17 trin 5207 . . . . . . . 8 ((Tr 𝑈 ∧ Tr On) → Tr (𝑈 ∩ On))
1815, 16, 17sylancl 586 . . . . . . 7 (𝑈 ∈ Univ → Tr (𝑈 ∩ On))
19 inss2 4185 . . . . . . . 8 (𝑈 ∩ On) ⊆ On
20 epweon 7708 . . . . . . . 8 E We On
21 wess 5600 . . . . . . . 8 ((𝑈 ∩ On) ⊆ On → ( E We On → E We (𝑈 ∩ On)))
2219, 20, 21mp2 9 . . . . . . 7 E We (𝑈 ∩ On)
23 df-ord 6309 . . . . . . 7 (Ord (𝑈 ∩ On) ↔ (Tr (𝑈 ∩ On) ∧ E We (𝑈 ∩ On)))
2418, 22, 23sylanblrc 590 . . . . . 6 (𝑈 ∈ Univ → Ord (𝑈 ∩ On))
25 inex1g 5255 . . . . . 6 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ V)
26 elon2 6317 . . . . . 6 ((𝑈 ∩ On) ∈ On ↔ (Ord (𝑈 ∩ On) ∧ (𝑈 ∩ On) ∈ V))
2724, 25, 26sylanbrc 583 . . . . 5 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ On)
288, 27eqeltrid 2835 . . . 4 (𝑈 ∈ Univ → 𝐴 ∈ On)
2928adantr 480 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On)
30 eloni 6316 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
31 ordirr 6324 . . . . . . 7 (Ord 𝐴 → ¬ 𝐴𝐴)
3230, 31syl 17 . . . . . 6 (𝐴 ∈ On → ¬ 𝐴𝐴)
33 elin 3913 . . . . . . . . 9 (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴𝑈𝐴 ∈ On))
3433biimpri 228 . . . . . . . 8 ((𝐴𝑈𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On))
3534, 8eleqtrrdi 2842 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → 𝐴𝐴)
3635expcom 413 . . . . . 6 (𝐴 ∈ On → (𝐴𝑈𝐴𝐴))
3732, 36mtod 198 . . . . 5 (𝐴 ∈ On → ¬ 𝐴𝑈)
3829, 37syl 17 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ 𝐴𝑈)
39 inss1 4184 . . . . . . . . . . . . . . . 16 (𝑈 ∩ On) ⊆ 𝑈
408, 39eqsstri 3976 . . . . . . . . . . . . . . 15 𝐴𝑈
4140sseli 3925 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥𝑈)
42 vpwex 5313 . . . . . . . . . . . . . . . 16 𝒫 𝑥 ∈ V
4342canth2 9043 . . . . . . . . . . . . . . 15 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥
4442pwex 5316 . . . . . . . . . . . . . . . . . 18 𝒫 𝒫 𝑥 ∈ V
4544cardid 10438 . . . . . . . . . . . . . . . . 17 (card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥
4645ensymi 8926 . . . . . . . . . . . . . . . 16 𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥)
4728adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ On)
48 grupw 10686 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
49 grupw 10686 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5048, 49syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5128adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → 𝐴 ∈ On)
52 endom 8901 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥 → (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)
5345, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥
54 cardon 9837 . . . . . . . . . . . . . . . . . . . . . 22 (card‘𝒫 𝒫 𝑥) ∈ On
55 grudomon 10708 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 ∈ Univ ∧ (card‘𝒫 𝒫 𝑥) ∈ On ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5654, 55mp3an2 1451 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ Univ ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5753, 56mpanr2 704 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
58 elin 3913 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On) ↔ ((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On))
5958biimpri 228 . . . . . . . . . . . . . . . . . . . . 21 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On))
6059, 8eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . . 20 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
6157, 54, 60sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
62 onelss 6348 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ∈ 𝐴 → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴))
6351, 61, 62sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
6450, 63syldan 591 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
65 ssdomg 8922 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ⊆ 𝐴 → (card‘𝒫 𝒫 𝑥) ≼ 𝐴))
6647, 64, 65sylc 65 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ≼ 𝐴)
67 endomtr 8934 . . . . . . . . . . . . . . . 16 ((𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥) ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝐴) → 𝒫 𝒫 𝑥𝐴)
6846, 66, 67sylancr 587 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝐴)
69 sdomdomtr 9023 . . . . . . . . . . . . . . 15 ((𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥𝐴) → 𝒫 𝑥𝐴)
7043, 68, 69sylancr 587 . . . . . . . . . . . . . 14 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝐴)
7141, 70sylan2 593 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝒫 𝑥𝐴)
7271ralrimiva 3124 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝒫 𝑥𝐴)
73 inawinalem 10580 . . . . . . . . . . . 12 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
7428, 72, 73sylc 65 . . . . . . . . . . 11 (𝑈 ∈ Univ → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
7574adantr 480 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
76 winainflem 10584 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
7714, 29, 75, 76syl3anc 1373 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ω ⊆ 𝐴)
78 vex 3440 . . . . . . . . . . . . . . 15 𝑥 ∈ V
7978canth2 9043 . . . . . . . . . . . . . 14 𝑥 ≺ 𝒫 𝑥
80 sdomtr 9028 . . . . . . . . . . . . . 14 ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥𝐴) → 𝑥𝐴)
8179, 71, 80sylancr 587 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝑥𝐴)
8281ralrimiva 3124 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝑥𝐴)
83 iscard 9868 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
8428, 82, 83sylanbrc 583 . . . . . . . . . . 11 (𝑈 ∈ Univ → (card‘𝐴) = 𝐴)
85 cardlim 9865 . . . . . . . . . . . 12 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
86 sseq2 3956 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴))
87 limeq 6318 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴))
8886, 87bibi12d 345 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴)))
8985, 88mpbii 233 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9084, 89syl 17 . . . . . . . . . 10 (𝑈 ∈ Univ → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9190adantr 480 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9277, 91mpbid 232 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Lim 𝐴)
93 cflm 10141 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
9429, 92, 93syl2anc 584 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
95 cardon 9837 . . . . . . . . . . . 12 (card‘𝑦) ∈ On
96 eleq1 2819 . . . . . . . . . . . 12 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
9795, 96mpbiri 258 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
9897adantr 480 . . . . . . . . . 10 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
9998exlimiv 1931 . . . . . . . . 9 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
10099abssi 4015 . . . . . . . 8 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On
101 fvex 6835 . . . . . . . . . 10 (cf‘𝐴) ∈ V
10294, 101eqeltrrdi 2840 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
103 intex 5280 . . . . . . . . 9 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅ ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
104102, 103sylibr 234 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅)
105 onint 7723 . . . . . . . 8 (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
106100, 104, 105sylancr 587 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
10794, 106eqeltrd 2831 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
108 eqeq1 2735 . . . . . . . . 9 (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦)))
109108anbi1d 631 . . . . . . . 8 (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
110109exbidv 1922 . . . . . . 7 (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
111101, 110elab 3630 . . . . . 6 ((cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
112107, 111sylib 218 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
113 simp2rr 1244 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴 = 𝑦)
114 simp1l 1198 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑈 ∈ Univ)
115 simp2rl 1243 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝐴)
116115, 40sstrdi 3942 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
11740sseli 3925 . . . . . . . . . . 11 ((cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) ∈ 𝑈)
1181173ad2ant3 1135 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ∈ 𝑈)
119 simp2l 1200 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) = (card‘𝑦))
120 vex 3440 . . . . . . . . . . . 12 𝑦 ∈ V
121120cardid 10438 . . . . . . . . . . 11 (card‘𝑦) ≈ 𝑦
122119, 121eqbrtrdi 5128 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ≈ 𝑦)
123 gruen 10703 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑦𝑈 ∧ ((cf‘𝐴) ∈ 𝑈 ∧ (cf‘𝐴) ≈ 𝑦)) → 𝑦𝑈)
124114, 116, 118, 122, 123syl112anc 1376 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
125 gruuni 10691 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑦𝑈) → 𝑦𝑈)
126114, 124, 125syl2anc 584 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
127113, 126eqeltrd 2831 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴𝑈)
1281273exp 1119 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
129128exlimdv 1934 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
130112, 129mpd 15 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈))
13138, 130mtod 198 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ (cf‘𝐴) ∈ 𝐴)
132 cfon 10146 . . . . 5 (cf‘𝐴) ∈ On
133 cfle 10145 . . . . . 6 (cf‘𝐴) ⊆ 𝐴
134 onsseleq 6347 . . . . . 6 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ⊆ 𝐴 ↔ ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴)))
135133, 134mpbii 233 . . . . 5 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
136132, 135mpan 690 . . . 4 (𝐴 ∈ On → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
137136ord 864 . . 3 (𝐴 ∈ On → (¬ (cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) = 𝐴))
13829, 131, 137sylc 65 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = 𝐴)
13972adantr 480 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴 𝒫 𝑥𝐴)
140 elina 10578 . 2 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
14114, 138, 139, 140syl3anbrc 1344 1 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547   cuni 4856   cint 4895   class class class wbr 5089  Tr wtr 5196   E cep 5513   We wwe 5566  Ord word 6305  Oncon0 6306  Lim wlim 6307  cfv 6481  ωcom 7796  cen 8866  cdom 8867  csdm 8868  cardccrd 9828  cfccf 9830  Inacccina 10574  Univcgru 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-card 9832  df-cf 9834  df-ac 10007  df-ina 10576  df-gru 10682
This theorem is referenced by:  grur1a  10710  grur1  10711  grutsk  10713
  Copyright terms: Public domain W3C validator