MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrecs3OLD Structured version   Visualization version   GIF version

Theorem dfrecs3OLD 8266
Description: Obsolete proof of dfrecs3 8265 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 3-Aug-2020.)
Assertion
Ref Expression
dfrecs3OLD recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Distinct variable group:   𝑓,𝐹,𝑥,𝑦

Proof of Theorem dfrecs3OLD
StepHypRef Expression
1 df-recs 8264 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
2 dfwrecsOLD 8191 . 2 wrecs( E , On, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))}
3 3anass 1094 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))))
4 vex 3445 . . . . . . . . . . . 12 𝑥 ∈ V
54elon 6305 . . . . . . . . . . 11 (𝑥 ∈ On ↔ Ord 𝑥)
6 ordsson 7687 . . . . . . . . . . . . 13 (Ord 𝑥𝑥 ⊆ On)
7 ordtr 6310 . . . . . . . . . . . . 13 (Ord 𝑥 → Tr 𝑥)
86, 7jca 512 . . . . . . . . . . . 12 (Ord 𝑥 → (𝑥 ⊆ On ∧ Tr 𝑥))
9 epweon 7679 . . . . . . . . . . . . . . 15 E We On
10 wess 5601 . . . . . . . . . . . . . . 15 (𝑥 ⊆ On → ( E We On → E We 𝑥))
119, 10mpi 20 . . . . . . . . . . . . . 14 (𝑥 ⊆ On → E We 𝑥)
1211anim1ci 616 . . . . . . . . . . . . 13 ((𝑥 ⊆ On ∧ Tr 𝑥) → (Tr 𝑥 ∧ E We 𝑥))
13 df-ord 6299 . . . . . . . . . . . . 13 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
1412, 13sylibr 233 . . . . . . . . . . . 12 ((𝑥 ⊆ On ∧ Tr 𝑥) → Ord 𝑥)
158, 14impbii 208 . . . . . . . . . . 11 (Ord 𝑥 ↔ (𝑥 ⊆ On ∧ Tr 𝑥))
16 dftr3 5212 . . . . . . . . . . . . 13 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
17 ssel2 3926 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
18 predon 7690 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → Pred( E , On, 𝑦) = 𝑦)
1918sseq1d 3962 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2017, 19syl 17 . . . . . . . . . . . . . 14 ((𝑥 ⊆ On ∧ 𝑦𝑥) → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2120ralbidva 3168 . . . . . . . . . . . . 13 (𝑥 ⊆ On → (∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥))
2216, 21bitr4id 289 . . . . . . . . . . . 12 (𝑥 ⊆ On → (Tr 𝑥 ↔ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2322pm5.32i 575 . . . . . . . . . . 11 ((𝑥 ⊆ On ∧ Tr 𝑥) ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
245, 15, 233bitri 296 . . . . . . . . . 10 (𝑥 ∈ On ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2524anbi1i 624 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))))
26 onelon 6321 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
2718reseq2d 5917 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝑓 ↾ Pred( E , On, 𝑦)) = (𝑓𝑦))
2827fveq2d 6823 . . . . . . . . . . . . 13 (𝑦 ∈ On → (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) = (𝐹‘(𝑓𝑦)))
2928eqeq2d 2747 . . . . . . . . . . . 12 (𝑦 ∈ On → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3026, 29syl 17 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3130ralbidva 3168 . . . . . . . . . 10 (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3231pm5.32i 575 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3325, 32bitr3i 276 . . . . . . . 8 (((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3433anbi2i 623 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
35 an12 642 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
363, 34, 353bitri 296 . . . . . 6 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
3736exbii 1849 . . . . 5 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
38 df-rex 3071 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
3937, 38bitr4i 277 . . . 4 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4039abbii 2806 . . 3 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
4140unieqi 4864 . 2 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
421, 2, 413eqtri 2768 1 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1540  wex 1780  wcel 2105  {cab 2713  wral 3061  wrex 3070  wss 3897   cuni 4851  Tr wtr 5206   E cep 5517   We wwe 5568  cres 5616  Predcpred 6231  Ord word 6295  Oncon0 6296   Fn wfn 6468  cfv 6473  wrecscwrecs 8189  recscrecs 8263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-fo 6479  df-fv 6481  df-ov 7332  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator