Proof of Theorem dfrecs3OLD
| Step | Hyp | Ref
| Expression |
| 1 | | df-recs 8390 |
. 2
⊢
recs(𝐹) = wrecs( E ,
On, 𝐹) |
| 2 | | dfwrecsOLD 8317 |
. 2
⊢ wrecs( E
, On, 𝐹) = ∪ {𝑓
∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))} |
| 3 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))))) |
| 4 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 5 | 4 | elon 6366 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 6 | | ordsson 7782 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑥 → 𝑥 ⊆ On) |
| 7 | | ordtr 6371 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑥 → Tr 𝑥) |
| 8 | 6, 7 | jca 511 |
. . . . . . . . . . . 12
⊢ (Ord
𝑥 → (𝑥 ⊆ On ∧ Tr 𝑥)) |
| 9 | | epweon 7774 |
. . . . . . . . . . . . . . 15
⊢ E We
On |
| 10 | | wess 5645 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ On → ( E We On
→ E We 𝑥)) |
| 11 | 9, 10 | mpi 20 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ On → E We 𝑥) |
| 12 | 11 | anim1ci 616 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ⊆ On ∧ Tr 𝑥) → (Tr 𝑥 ∧ E We 𝑥)) |
| 13 | | df-ord 6360 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥)) |
| 14 | 12, 13 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((𝑥 ⊆ On ∧ Tr 𝑥) → Ord 𝑥) |
| 15 | 8, 14 | impbii 209 |
. . . . . . . . . . 11
⊢ (Ord
𝑥 ↔ (𝑥 ⊆ On ∧ Tr 𝑥)) |
| 16 | | dftr3 5240 |
. . . . . . . . . . . . 13
⊢ (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) |
| 17 | | ssel2 3958 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
| 18 | | predon 7785 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ On → Pred( E , On,
𝑦) = 𝑦) |
| 19 | 18 | sseq1d 3995 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ On → (Pred( E , On,
𝑦) ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑥)) |
| 20 | 17, 19 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥) → (Pred( E , On, 𝑦) ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑥)) |
| 21 | 20 | ralbidva 3162 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ On →
(∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥)) |
| 22 | 16, 21 | bitr4id 290 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ On → (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥)) |
| 23 | 22 | pm5.32i 574 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ On ∧ Tr 𝑥) ↔ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥)) |
| 24 | 5, 15, 23 | 3bitri 297 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On ↔ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥)) |
| 25 | 24 | anbi1i 624 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ((𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))) |
| 26 | | onelon 6382 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
| 27 | 18 | reseq2d 5971 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ On → (𝑓 ↾ Pred( E , On, 𝑦)) = (𝑓 ↾ 𝑦)) |
| 28 | 27 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ On → (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) = (𝐹‘(𝑓 ↾ 𝑦))) |
| 29 | 28 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ On → ((𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
| 30 | 26, 29 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ((𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
| 31 | 30 | ralbidva 3162 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
| 32 | 31 | pm5.32i 574 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
| 33 | 25, 32 | bitr3i 277 |
. . . . . . . 8
⊢ (((𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
| 34 | 33 | anbi2i 623 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
| 35 | | an12 645 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
| 36 | 3, 34, 35 | 3bitri 297 |
. . . . . 6
⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
| 37 | 36 | exbii 1848 |
. . . . 5
⊢
(∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
| 38 | | df-rex 3062 |
. . . . 5
⊢
(∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
| 39 | 37, 38 | bitr4i 278 |
. . . 4
⊢
(∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
| 40 | 39 | abbii 2803 |
. . 3
⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 41 | 40 | unieqi 4900 |
. 2
⊢ ∪ {𝑓
∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 42 | 1, 2, 41 | 3eqtri 2763 |
1
⊢
recs(𝐹) = ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |