MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrecs3OLD Structured version   Visualization version   GIF version

Theorem dfrecs3OLD 8224
Description: Obsolete proof of dfrecs3 8223 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 3-Aug-2020.)
Assertion
Ref Expression
dfrecs3OLD recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Distinct variable group:   𝑓,𝐹,𝑥,𝑦

Proof of Theorem dfrecs3OLD
StepHypRef Expression
1 df-recs 8222 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
2 dfwrecsOLD 8149 . 2 wrecs( E , On, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))}
3 3anass 1093 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))))
4 vex 3438 . . . . . . . . . . . 12 𝑥 ∈ V
54elon 6279 . . . . . . . . . . 11 (𝑥 ∈ On ↔ Ord 𝑥)
6 ordsson 7653 . . . . . . . . . . . . 13 (Ord 𝑥𝑥 ⊆ On)
7 ordtr 6284 . . . . . . . . . . . . 13 (Ord 𝑥 → Tr 𝑥)
86, 7jca 511 . . . . . . . . . . . 12 (Ord 𝑥 → (𝑥 ⊆ On ∧ Tr 𝑥))
9 epweon 7645 . . . . . . . . . . . . . . 15 E We On
10 wess 5578 . . . . . . . . . . . . . . 15 (𝑥 ⊆ On → ( E We On → E We 𝑥))
119, 10mpi 20 . . . . . . . . . . . . . 14 (𝑥 ⊆ On → E We 𝑥)
1211anim1ci 615 . . . . . . . . . . . . 13 ((𝑥 ⊆ On ∧ Tr 𝑥) → (Tr 𝑥 ∧ E We 𝑥))
13 df-ord 6273 . . . . . . . . . . . . 13 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
1412, 13sylibr 233 . . . . . . . . . . . 12 ((𝑥 ⊆ On ∧ Tr 𝑥) → Ord 𝑥)
158, 14impbii 208 . . . . . . . . . . 11 (Ord 𝑥 ↔ (𝑥 ⊆ On ∧ Tr 𝑥))
16 dftr3 5198 . . . . . . . . . . . . 13 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
17 ssel2 3918 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
18 predon 7655 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → Pred( E , On, 𝑦) = 𝑦)
1918sseq1d 3954 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2017, 19syl 17 . . . . . . . . . . . . . 14 ((𝑥 ⊆ On ∧ 𝑦𝑥) → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2120ralbidva 3166 . . . . . . . . . . . . 13 (𝑥 ⊆ On → (∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥))
2216, 21bitr4id 289 . . . . . . . . . . . 12 (𝑥 ⊆ On → (Tr 𝑥 ↔ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2322pm5.32i 574 . . . . . . . . . . 11 ((𝑥 ⊆ On ∧ Tr 𝑥) ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
245, 15, 233bitri 296 . . . . . . . . . 10 (𝑥 ∈ On ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2524anbi1i 623 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))))
26 onelon 6295 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
2718reseq2d 5894 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝑓 ↾ Pred( E , On, 𝑦)) = (𝑓𝑦))
2827fveq2d 6796 . . . . . . . . . . . . 13 (𝑦 ∈ On → (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) = (𝐹‘(𝑓𝑦)))
2928eqeq2d 2744 . . . . . . . . . . . 12 (𝑦 ∈ On → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3026, 29syl 17 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3130ralbidva 3166 . . . . . . . . . 10 (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3231pm5.32i 574 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3325, 32bitr3i 276 . . . . . . . 8 (((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3433anbi2i 622 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
35 an12 641 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
363, 34, 353bitri 296 . . . . . 6 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
3736exbii 1846 . . . . 5 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
38 df-rex 3069 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
3937, 38bitr4i 277 . . . 4 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4039abbii 2803 . . 3 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
4140unieqi 4854 . 2 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
421, 2, 413eqtri 2765 1 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1537  wex 1777  wcel 2101  {cab 2710  wral 3059  wrex 3068  wss 3889   cuni 4841  Tr wtr 5194   E cep 5496   We wwe 5545  cres 5593  Predcpred 6205  Ord word 6269  Oncon0 6270   Fn wfn 6442  cfv 6447  wrecscwrecs 8147  recscrecs 8221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-fo 6453  df-fv 6455  df-ov 7298  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator