MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrecs3OLD Structured version   Visualization version   GIF version

Theorem dfrecs3OLD 8392
Description: Obsolete version of dfrecs3 8391 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 3-Aug-2020.)
Assertion
Ref Expression
dfrecs3OLD recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Distinct variable group:   𝑓,𝐹,𝑥,𝑦

Proof of Theorem dfrecs3OLD
StepHypRef Expression
1 df-recs 8390 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
2 dfwrecsOLD 8317 . 2 wrecs( E , On, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))}
3 3anass 1094 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))))
4 vex 3468 . . . . . . . . . . . 12 𝑥 ∈ V
54elon 6366 . . . . . . . . . . 11 (𝑥 ∈ On ↔ Ord 𝑥)
6 ordsson 7782 . . . . . . . . . . . . 13 (Ord 𝑥𝑥 ⊆ On)
7 ordtr 6371 . . . . . . . . . . . . 13 (Ord 𝑥 → Tr 𝑥)
86, 7jca 511 . . . . . . . . . . . 12 (Ord 𝑥 → (𝑥 ⊆ On ∧ Tr 𝑥))
9 epweon 7774 . . . . . . . . . . . . . . 15 E We On
10 wess 5645 . . . . . . . . . . . . . . 15 (𝑥 ⊆ On → ( E We On → E We 𝑥))
119, 10mpi 20 . . . . . . . . . . . . . 14 (𝑥 ⊆ On → E We 𝑥)
1211anim1ci 616 . . . . . . . . . . . . 13 ((𝑥 ⊆ On ∧ Tr 𝑥) → (Tr 𝑥 ∧ E We 𝑥))
13 df-ord 6360 . . . . . . . . . . . . 13 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
1412, 13sylibr 234 . . . . . . . . . . . 12 ((𝑥 ⊆ On ∧ Tr 𝑥) → Ord 𝑥)
158, 14impbii 209 . . . . . . . . . . 11 (Ord 𝑥 ↔ (𝑥 ⊆ On ∧ Tr 𝑥))
16 dftr3 5240 . . . . . . . . . . . . 13 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
17 ssel2 3958 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
18 predon 7785 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → Pred( E , On, 𝑦) = 𝑦)
1918sseq1d 3995 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2017, 19syl 17 . . . . . . . . . . . . . 14 ((𝑥 ⊆ On ∧ 𝑦𝑥) → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2120ralbidva 3162 . . . . . . . . . . . . 13 (𝑥 ⊆ On → (∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥))
2216, 21bitr4id 290 . . . . . . . . . . . 12 (𝑥 ⊆ On → (Tr 𝑥 ↔ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2322pm5.32i 574 . . . . . . . . . . 11 ((𝑥 ⊆ On ∧ Tr 𝑥) ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
245, 15, 233bitri 297 . . . . . . . . . 10 (𝑥 ∈ On ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2524anbi1i 624 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))))
26 onelon 6382 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
2718reseq2d 5971 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝑓 ↾ Pred( E , On, 𝑦)) = (𝑓𝑦))
2827fveq2d 6885 . . . . . . . . . . . . 13 (𝑦 ∈ On → (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) = (𝐹‘(𝑓𝑦)))
2928eqeq2d 2747 . . . . . . . . . . . 12 (𝑦 ∈ On → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3026, 29syl 17 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3130ralbidva 3162 . . . . . . . . . 10 (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3231pm5.32i 574 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3325, 32bitr3i 277 . . . . . . . 8 (((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3433anbi2i 623 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
35 an12 645 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
363, 34, 353bitri 297 . . . . . 6 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
3736exbii 1848 . . . . 5 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
38 df-rex 3062 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
3937, 38bitr4i 278 . . . 4 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4039abbii 2803 . . 3 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
4140unieqi 4900 . 2 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
421, 2, 413eqtri 2763 1 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wral 3052  wrex 3061  wss 3931   cuni 4888  Tr wtr 5234   E cep 5557   We wwe 5610  cres 5661  Predcpred 6294  Ord word 6356  Oncon0 6357   Fn wfn 6531  cfv 6536  wrecscwrecs 8315  recscrecs 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator