![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordeq | Structured version Visualization version GIF version |
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 5291 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
2 | weeq2 5688 | . . 3 ⊢ (𝐴 = 𝐵 → ( E We 𝐴 ↔ E We 𝐵)) | |
3 | 1, 2 | anbi12d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐵 ∧ E We 𝐵))) |
4 | df-ord 6398 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
5 | df-ord 6398 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ E We 𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Tr wtr 5283 E cep 5598 We wwe 5651 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 |
This theorem is referenced by: elong 6403 limeq 6407 ordelord 6417 ordun 6499 ordeleqon 7817 ordsuc 7849 ordsucOLD 7850 ordzsl 7882 issmo 8404 issmo2 8405 smoeq 8406 smores 8408 smores2 8410 smodm2 8411 smoiso 8418 tfrlem8 8440 ord3 8539 ordtypelem5 9591 ordtypelem7 9593 oicl 9598 oieu 9608 dfsucon 43485 |
Copyright terms: Public domain | W3C validator |