MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordeq Structured version   Visualization version   GIF version

Theorem ordeq 6327
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
ordeq (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))

Proof of Theorem ordeq
StepHypRef Expression
1 treq 5217 . . 3 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
2 weeq2 5619 . . 3 (𝐴 = 𝐵 → ( E We 𝐴 ↔ E We 𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐵 ∧ E We 𝐵)))
4 df-ord 6323 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
5 df-ord 6323 . 2 (Ord 𝐵 ↔ (Tr 𝐵 ∧ E We 𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  Tr wtr 5209   E cep 5530   We wwe 5583  Ord word 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3446  df-ss 3928  df-uni 4868  df-tr 5210  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323
This theorem is referenced by:  elong  6328  limeq  6332  ordelord  6342  ordun  6426  ordeleqon  7738  ordsuc  7768  ordsucOLD  7769  ordzsl  7801  issmo  8294  issmo2  8295  smoeq  8296  smores  8298  smores2  8300  smodm2  8301  smoiso  8308  tfrlem8  8329  ord3  8426  ordtypelem5  9451  ordtypelem7  9453  oicl  9458  oieu  9468  dfsucon  43505
  Copyright terms: Public domain W3C validator