MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordeq Structured version   Visualization version   GIF version

Theorem ordeq 5974
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
ordeq (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))

Proof of Theorem ordeq
StepHypRef Expression
1 treq 4983 . . 3 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
2 weeq2 5335 . . 3 (𝐴 = 𝐵 → ( E We 𝐴 ↔ E We 𝐵))
31, 2anbi12d 624 . 2 (𝐴 = 𝐵 → ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐵 ∧ E We 𝐵)))
4 df-ord 5970 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
5 df-ord 5970 . 2 (Ord 𝐵 ↔ (Tr 𝐵 ∧ E We 𝐵))
63, 4, 53bitr4g 306 1 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  Tr wtr 4977   E cep 5256   We wwe 5304  Ord word 5966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-in 3805  df-ss 3812  df-uni 4661  df-tr 4978  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-ord 5970
This theorem is referenced by:  elong  5975  limeq  5979  ordelord  5989  ordun  6068  ordeleqon  7254  ordsuc  7280  ordzsl  7311  issmo  7716  issmo2  7717  smoeq  7718  smores  7720  smores2  7722  smodm2  7723  smoiso  7730  tfrlem8  7751  ordtypelem5  8703  ordtypelem7  8705  oicl  8710  oieu  8720
  Copyright terms: Public domain W3C validator