| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | treq 5224 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
| 2 | weeq2 5628 | . . 3 ⊢ (𝐴 = 𝐵 → ( E We 𝐴 ↔ E We 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐵 ∧ E We 𝐵))) |
| 4 | df-ord 6337 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 5 | df-ord 6337 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ E We 𝐵)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Tr wtr 5216 E cep 5539 We wwe 5592 Ord word 6333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3933 df-uni 4874 df-tr 5217 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-ord 6337 |
| This theorem is referenced by: elong 6342 limeq 6346 ordelord 6356 ordun 6440 ordeleqon 7760 ordsuc 7790 ordsucOLD 7791 ordzsl 7823 issmo 8319 issmo2 8320 smoeq 8321 smores 8323 smores2 8325 smodm2 8326 smoiso 8333 tfrlem8 8354 ord3 8451 ordtypelem5 9481 ordtypelem7 9483 oicl 9488 oieu 9498 dfsucon 43505 |
| Copyright terms: Public domain | W3C validator |