MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordeq Structured version   Visualization version   GIF version

Theorem ordeq 6341
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
ordeq (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))

Proof of Theorem ordeq
StepHypRef Expression
1 treq 5224 . . 3 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
2 weeq2 5628 . . 3 (𝐴 = 𝐵 → ( E We 𝐴 ↔ E We 𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐵 ∧ E We 𝐵)))
4 df-ord 6337 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
5 df-ord 6337 . 2 (Ord 𝐵 ↔ (Tr 𝐵 ∧ E We 𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  Tr wtr 5216   E cep 5539   We wwe 5592  Ord word 6333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-ss 3933  df-uni 4874  df-tr 5217  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-ord 6337
This theorem is referenced by:  elong  6342  limeq  6346  ordelord  6356  ordun  6440  ordeleqon  7760  ordsuc  7790  ordsucOLD  7791  ordzsl  7823  issmo  8319  issmo2  8320  smoeq  8321  smores  8323  smores2  8325  smodm2  8326  smoiso  8333  tfrlem8  8354  ord3  8451  ordtypelem5  9481  ordtypelem7  9483  oicl  9488  oieu  9498  dfsucon  43505
  Copyright terms: Public domain W3C validator