![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordeq | Structured version Visualization version GIF version |
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 5273 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
2 | weeq2 5677 | . . 3 ⊢ (𝐴 = 𝐵 → ( E We 𝐴 ↔ E We 𝐵)) | |
3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐵 ∧ E We 𝐵))) |
4 | df-ord 6389 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
5 | df-ord 6389 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ E We 𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Tr wtr 5265 E cep 5588 We wwe 5640 Ord word 6385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-v 3480 df-ss 3980 df-uni 4913 df-tr 5266 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 |
This theorem is referenced by: elong 6394 limeq 6398 ordelord 6408 ordun 6490 ordeleqon 7801 ordsuc 7833 ordsucOLD 7834 ordzsl 7866 issmo 8387 issmo2 8388 smoeq 8389 smores 8391 smores2 8393 smodm2 8394 smoiso 8401 tfrlem8 8423 ord3 8522 ordtypelem5 9560 ordtypelem7 9562 oicl 9567 oieu 9577 dfsucon 43513 |
Copyright terms: Public domain | W3C validator |