Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordeq | Structured version Visualization version GIF version |
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 5193 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
2 | weeq2 5569 | . . 3 ⊢ (𝐴 = 𝐵 → ( E We 𝐴 ↔ E We 𝐵)) | |
3 | 1, 2 | anbi12d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐵 ∧ E We 𝐵))) |
4 | df-ord 6254 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
5 | df-ord 6254 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ E We 𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Tr wtr 5187 E cep 5485 We wwe 5534 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: elong 6259 limeq 6263 ordelord 6273 ordun 6352 ordeleqon 7609 ordsuc 7636 ordzsl 7667 issmo 8150 issmo2 8151 smoeq 8152 smores 8154 smores2 8156 smodm2 8157 smoiso 8164 tfrlem8 8186 ordtypelem5 9211 ordtypelem7 9213 oicl 9218 oieu 9228 dfsucon 41028 |
Copyright terms: Public domain | W3C validator |