| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | treq 5203 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
| 2 | weeq2 5602 | . . 3 ⊢ (𝐴 = 𝐵 → ( E We 𝐴 ↔ E We 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ E We 𝐴) ↔ (Tr 𝐵 ∧ E We 𝐵))) |
| 4 | df-ord 6309 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 5 | df-ord 6309 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ E We 𝐵)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Tr wtr 5196 E cep 5513 We wwe 5566 Ord word 6305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-uni 4857 df-tr 5197 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 |
| This theorem is referenced by: elong 6314 limeq 6318 ordelord 6328 ordun 6412 ordeleqon 7715 ordsuc 7744 ordzsl 7775 issmo 8268 issmo2 8269 smoeq 8270 smores 8272 smores2 8274 smodm2 8275 smoiso 8282 tfrlem8 8303 ord3 8400 ordtypelem5 9408 ordtypelem7 9410 oicl 9415 oieu 9425 fineqvnttrclse 35144 dfsucon 43626 |
| Copyright terms: Public domain | W3C validator |