MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trssord Structured version   Visualization version   GIF version

Theorem trssord 6184
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)

Proof of Theorem trssord
StepHypRef Expression
1 wess 5509 . . . . 5 (𝐴𝐵 → ( E We 𝐵 → E We 𝐴))
2 ordwe 6180 . . . . 5 (Ord 𝐵 → E We 𝐵)
31, 2impel 510 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → E We 𝐴)
43anim2i 620 . . 3 ((Tr 𝐴 ∧ (𝐴𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ E We 𝐴))
543impb 1113 . 2 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ E We 𝐴))
6 df-ord 6170 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
75, 6sylibr 237 1 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085  wss 3859  Tr wtr 5136   E cep 5432   We wwe 5480  Ord word 6166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 401  df-3an 1087  df-tru 1542  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3076  df-v 3412  df-in 3866  df-ss 3876  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-ord 6170
This theorem is referenced by:  ordin  6197  ssorduni  7497  suceloni  7525  ordom  7586  ordtypelem2  9006  hartogs  9031  card2on  9041  tskwe  9402  ondomon  10013  dford3lem2  40331  dford3  40332  iunord  45561
  Copyright terms: Public domain W3C validator