Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trssord | Structured version Visualization version GIF version |
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
Ref | Expression |
---|---|
trssord | ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wess 5567 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( E We 𝐵 → E We 𝐴)) | |
2 | ordwe 6264 | . . . . 5 ⊢ (Ord 𝐵 → E We 𝐵) | |
3 | 1, 2 | impel 505 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → E We 𝐴) |
4 | 3 | anim2i 616 | . . 3 ⊢ ((Tr 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ E We 𝐴)) |
5 | 4 | 3impb 1113 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ E We 𝐴)) |
6 | df-ord 6254 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ⊆ wss 3883 Tr wtr 5187 E cep 5485 We wwe 5534 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: ordin 6281 ssorduni 7606 suceloni 7635 ordom 7697 ordtypelem2 9208 hartogs 9233 card2on 9243 tskwe 9639 ondomon 10250 dford3lem2 40765 dford3 40766 iunord 46268 |
Copyright terms: Public domain | W3C validator |