![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trssord | Structured version Visualization version GIF version |
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
Ref | Expression |
---|---|
trssord | ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wess 5686 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( E We 𝐵 → E We 𝐴)) | |
2 | ordwe 6408 | . . . . 5 ⊢ (Ord 𝐵 → E We 𝐵) | |
3 | 1, 2 | impel 505 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → E We 𝐴) |
4 | 3 | anim2i 616 | . . 3 ⊢ ((Tr 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ E We 𝐴)) |
5 | 4 | 3impb 1115 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ E We 𝐴)) |
6 | df-ord 6398 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
7 | 5, 6 | sylibr 234 | 1 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ⊆ wss 3976 Tr wtr 5283 E cep 5598 We wwe 5651 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ral 3068 df-ss 3993 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 |
This theorem is referenced by: ordin 6425 ssorduni 7814 ordsuci 7844 sucexeloniOLD 7846 suceloniOLD 7848 ordom 7913 ordtypelem2 9588 hartogs 9613 card2on 9623 tskwe 10019 ondomon 10632 dford3lem2 42984 dford3 42985 iunord 48768 |
Copyright terms: Public domain | W3C validator |