MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trssord Structured version   Visualization version   GIF version

Theorem trssord 6268
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)

Proof of Theorem trssord
StepHypRef Expression
1 wess 5567 . . . . 5 (𝐴𝐵 → ( E We 𝐵 → E We 𝐴))
2 ordwe 6264 . . . . 5 (Ord 𝐵 → E We 𝐵)
31, 2impel 505 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → E We 𝐴)
43anim2i 616 . . 3 ((Tr 𝐴 ∧ (𝐴𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ E We 𝐴))
543impb 1113 . 2 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ E We 𝐴))
6 df-ord 6254 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
75, 6sylibr 233 1 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wss 3883  Tr wtr 5187   E cep 5485   We wwe 5534  Ord word 6250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254
This theorem is referenced by:  ordin  6281  ssorduni  7606  suceloni  7635  ordom  7697  ordtypelem2  9208  hartogs  9233  card2on  9243  tskwe  9639  ondomon  10250  dford3lem2  40765  dford3  40766  iunord  46268
  Copyright terms: Public domain W3C validator