MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trssord Structured version   Visualization version   GIF version

Theorem trssord 6412
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)

Proof of Theorem trssord
StepHypRef Expression
1 wess 5686 . . . . 5 (𝐴𝐵 → ( E We 𝐵 → E We 𝐴))
2 ordwe 6408 . . . . 5 (Ord 𝐵 → E We 𝐵)
31, 2impel 505 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → E We 𝐴)
43anim2i 616 . . 3 ((Tr 𝐴 ∧ (𝐴𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ E We 𝐴))
543impb 1115 . 2 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ E We 𝐴))
6 df-ord 6398 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
75, 6sylibr 234 1 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wss 3976  Tr wtr 5283   E cep 5598   We wwe 5651  Ord word 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-ral 3068  df-ss 3993  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398
This theorem is referenced by:  ordin  6425  ssorduni  7814  ordsuci  7844  sucexeloniOLD  7846  suceloniOLD  7848  ordom  7913  ordtypelem2  9588  hartogs  9613  card2on  9623  tskwe  10019  ondomon  10632  dford3lem2  42984  dford3  42985  iunord  48768
  Copyright terms: Public domain W3C validator