MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trssord Structured version   Visualization version   GIF version

Theorem trssord 6283
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)

Proof of Theorem trssord
StepHypRef Expression
1 wess 5576 . . . . 5 (𝐴𝐵 → ( E We 𝐵 → E We 𝐴))
2 ordwe 6279 . . . . 5 (Ord 𝐵 → E We 𝐵)
31, 2impel 506 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → E We 𝐴)
43anim2i 617 . . 3 ((Tr 𝐴 ∧ (𝐴𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ E We 𝐴))
543impb 1114 . 2 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ E We 𝐴))
6 df-ord 6269 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
75, 6sylibr 233 1 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wss 3887  Tr wtr 5191   E cep 5494   We wwe 5543  Ord word 6265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269
This theorem is referenced by:  ordin  6296  ssorduni  7629  sucexeloni  7658  suceloniOLD  7660  ordom  7722  ordtypelem2  9278  hartogs  9303  card2on  9313  tskwe  9708  ondomon  10319  dford3lem2  40849  dford3  40850  iunord  46382
  Copyright terms: Public domain W3C validator