Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-termc Structured version   Visualization version   GIF version

Definition df-termc 49172
Description: Definition of the proper class (termcnex 49268) of terminal categories, or final categories, i.e., categories with exactly one object and exactly one morphism, the latter of which is an identity morphism (termcid 49184). These are exactly the thin categories with a singleton base set. Example 3.3(4.c) of [Adamek] p. 24.

As the name indicates, TermCat is the class of all terminal objects in the category of small categories (termcterm3 49213). TermCat is also the class of categories to which all categories have exactly one functor (dftermc2 49218). See also dftermc3 49229 where TermCat is defined as categories with exactly one disjointified arrow.

Unlike https://ncatlab.org/nlab/show/terminal+category 49229, we reserve the term "trivial category" for (SetCat‘1o), justified by setc1oterm 49189.

Followed directly from the definition, terminal categories are thin (termcthin 49176). The opposite category of a terminal category is "almost" itself (oppctermco 49203). Any category 𝐶 is isomorphic to the category of functors from a terminal category to the category 𝐶 (diagcic 49238).

Having defined the terminal category, we can then use it to define the universal property of initial (dfinito4 49199) and terminal objects (dftermo4 49200). The universal properties provide an alternate proof of initoeu1 18028, termoeu1 18035, initoeu2 18033, and termoeu2 48989. Since terminal categories are terminal objects, all terminal categories are mutually isomorphic (termcciso 49214).

The dual concept is the initial category, or the empty category (Example 7.2(3) of [Adamek] p. 101). See 0catg 17703, 0thincg 49159, and 0funcg 48943.

(Contributed by Zhi Wang, 16-Oct-2025.)

Assertion
Ref Expression
df-termc TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}}
Distinct variable group:   𝑥,𝑐

Detailed syntax breakdown of Definition df-termc
StepHypRef Expression
1 ctermc 49171 . 2 class TermCat
2 vc . . . . . . 7 setvar 𝑐
32cv 1538 . . . . . 6 class 𝑐
4 cbs 17230 . . . . . 6 class Base
53, 4cfv 6541 . . . . 5 class (Base‘𝑐)
6 vx . . . . . . 7 setvar 𝑥
76cv 1538 . . . . . 6 class 𝑥
87csn 4606 . . . . 5 class {𝑥}
95, 8wceq 1539 . . . 4 wff (Base‘𝑐) = {𝑥}
109, 6wex 1778 . . 3 wff 𝑥(Base‘𝑐) = {𝑥}
11 cthinc 49118 . . 3 class ThinCat
1210, 2, 11crab 3419 . 2 class {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}}
131, 12wceq 1539 1 wff TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}}
Colors of variables: wff setvar class
This definition is referenced by:  istermc  49173
  Copyright terms: Public domain W3C validator