Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcthin Structured version   Visualization version   GIF version

Theorem termcthin 49097
Description: A terminal category is a thin category. (Contributed by Zhi Wang, 16-Oct-2025.)
Assertion
Ref Expression
termcthin (𝐶 ∈ TermCat → 𝐶 ∈ ThinCat)

Proof of Theorem termcthin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐶) = (Base‘𝐶)
21istermc 49094 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥}))
32simplbi 497 1 (𝐶 ∈ TermCat → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2108  {csn 4624  cfv 6559  Basecbs 17243  ThinCatcthinc 49040  TermCatctermc 49092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-iota 6512  df-fv 6567  df-termc 49093
This theorem is referenced by:  termcthind  49098
  Copyright terms: Public domain W3C validator