Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcid Structured version   Visualization version   GIF version

Theorem termcid 49104
Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
termcid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
termcid.i 1 = (Id‘𝐶)
Assertion
Ref Expression
termcid (𝜑𝐹 = ( 1𝑋))

Proof of Theorem termcid
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
21termcthind 49098 . 2 (𝜑𝐶 ∈ ThinCat)
3 termcbas.b . 2 𝐵 = (Base‘𝐶)
4 termcid.h . 2 𝐻 = (Hom ‘𝐶)
5 termcbasmo.x . 2 (𝜑𝑋𝐵)
6 termcid.i . 2 1 = (Id‘𝐶)
7 termcid.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
8 termcbasmo.y . . . . 5 (𝜑𝑌𝐵)
91, 3, 5, 8termcbasmo 49101 . . . 4 (𝜑𝑋 = 𝑌)
109oveq2d 7445 . . 3 (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌))
117, 10eleqtrrd 2843 . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑋))
122, 3, 4, 5, 6, 11thincid 49054 1 (𝜑𝐹 = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6559  (class class class)co 7429  Basecbs 17243  Hom chom 17304  Idccid 17704  TermCatctermc 49092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-cat 17707  df-cid 17708  df-thinc 49041  df-termc 49093
This theorem is referenced by:  termcid2  49105
  Copyright terms: Public domain W3C validator