| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcid | Structured version Visualization version GIF version | ||
| Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcbasmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcbasmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termcid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| termcid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| termcid.i | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| termcid | ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | 1 | termcthind 49098 | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| 3 | termcbas.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | termcid.h | . 2 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | termcbasmo.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | termcid.i | . 2 ⊢ 1 = (Id‘𝐶) | |
| 7 | termcid.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 8 | termcbasmo.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 1, 3, 5, 8 | termcbasmo 49101 | . . . 4 ⊢ (𝜑 → 𝑋 = 𝑌) |
| 10 | 9 | oveq2d 7445 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌)) |
| 11 | 7, 10 | eleqtrrd 2843 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) |
| 12 | 2, 3, 4, 5, 6, 11 | thincid 49054 | 1 ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Hom chom 17304 Idccid 17704 TermCatctermc 49092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-cat 17707 df-cid 17708 df-thinc 49041 df-termc 49093 |
| This theorem is referenced by: termcid2 49105 |
| Copyright terms: Public domain | W3C validator |