Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcid Structured version   Visualization version   GIF version

Theorem termcid 49647
Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
termcid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
termcid.i 1 = (Id‘𝐶)
Assertion
Ref Expression
termcid (𝜑𝐹 = ( 1𝑋))

Proof of Theorem termcid
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
21termcthind 49639 . 2 (𝜑𝐶 ∈ ThinCat)
3 termcbas.b . 2 𝐵 = (Base‘𝐶)
4 termcid.h . 2 𝐻 = (Hom ‘𝐶)
5 termcbasmo.x . 2 (𝜑𝑋𝐵)
6 termcid.i . 2 1 = (Id‘𝐶)
7 termcid.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
8 termcbasmo.y . . . . 5 (𝜑𝑌𝐵)
91, 3, 5, 8termcbasmo 49644 . . . 4 (𝜑𝑋 = 𝑌)
109oveq2d 7371 . . 3 (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌))
117, 10eleqtrrd 2836 . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑋))
122, 3, 4, 5, 6, 11thincid 49593 1 (𝜑𝐹 = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  Idccid 17579  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-cat 17582  df-cid 17583  df-thinc 49579  df-termc 49634
This theorem is referenced by:  termcid2  49648  termchom  49649
  Copyright terms: Public domain W3C validator