| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diagcic | Structured version Visualization version GIF version | ||
| Description: Any category 𝐶 is isomorphic to the category of functors from a terminal category to 𝐶. See also the "Properties" section of https://ncatlab.org/nlab/show/terminal+category. Therefore the number of categories isomorphic to a non-empty category is at least the number of singletons, so large (snnex 7741) that these isomorphic categories form a proper class. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| diagffth.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diagffth.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| diagffth.q | ⊢ 𝑄 = (𝐷 FuncCat 𝐶) |
| diagciso.e | ⊢ 𝐸 = (CatCat‘𝑈) |
| diagciso.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| diagciso.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| diagciso.1 | ⊢ (𝜑 → 𝑄 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| diagcic | ⊢ (𝜑 → 𝐶( ≃𝑐 ‘𝐸)𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (Iso‘𝐸) = (Iso‘𝐸) | |
| 2 | eqid 2730 | . 2 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 3 | diagciso.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | diagciso.e | . . . 4 ⊢ 𝐸 = (CatCat‘𝑈) | |
| 5 | 4 | catccat 18076 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐸 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 7 | diagciso.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 8 | diagffth.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 9 | 7, 8 | elind 4171 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∩ Cat)) |
| 10 | 4, 2, 3 | catcbas 18069 | . . 3 ⊢ (𝜑 → (Base‘𝐸) = (𝑈 ∩ Cat)) |
| 11 | 9, 10 | eleqtrrd 2832 | . 2 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐸)) |
| 12 | diagciso.1 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑈) | |
| 13 | diagffth.q | . . . . 5 ⊢ 𝑄 = (𝐷 FuncCat 𝐶) | |
| 14 | diagffth.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 15 | 14 | termccd 49357 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 16 | 13, 15, 8 | fuccat 17941 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 17 | 12, 16 | elind 4171 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝑈 ∩ Cat)) |
| 18 | 17, 10 | eleqtrrd 2832 | . 2 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝐸)) |
| 19 | eqid 2730 | . . 3 ⊢ (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷) | |
| 20 | 8, 14, 13, 4, 3, 7, 12, 1, 19 | diagciso 49417 | . 2 ⊢ (𝜑 → (𝐶Δfunc𝐷) ∈ (𝐶(Iso‘𝐸)𝑄)) |
| 21 | 1, 2, 6, 11, 18, 20 | brcici 17768 | 1 ⊢ (𝜑 → 𝐶( ≃𝑐 ‘𝐸)𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3921 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 Catccat 17631 Isociso 17714 ≃𝑐 ccic 17763 FuncCat cfuc 17913 CatCatccatc 18066 Δfunccdiag 18179 TermCatctermc 49350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-sect 17715 df-inv 17716 df-iso 17717 df-cic 17764 df-func 17826 df-idfu 17827 df-cofu 17828 df-full 17874 df-fth 17875 df-nat 17914 df-fuc 17915 df-catc 18067 df-xpc 18139 df-1stf 18140 df-curf 18181 df-diag 18183 df-thinc 49296 df-termc 49351 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |