| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diagcic | Structured version Visualization version GIF version | ||
| Description: Any category 𝐶 is isomorphic to the category of functors from a terminal category to 𝐶. See also the "Properties" section of https://ncatlab.org/nlab/show/terminal+category. Therefore the number of categories isomorphic to a non-empty category is at least the number of singletons, so large (snnex 7691) that these isomorphic categories form a proper class. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| diagffth.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diagffth.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| diagffth.q | ⊢ 𝑄 = (𝐷 FuncCat 𝐶) |
| diagciso.e | ⊢ 𝐸 = (CatCat‘𝑈) |
| diagciso.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| diagciso.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| diagciso.1 | ⊢ (𝜑 → 𝑄 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| diagcic | ⊢ (𝜑 → 𝐶( ≃𝑐 ‘𝐸)𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (Iso‘𝐸) = (Iso‘𝐸) | |
| 2 | eqid 2731 | . 2 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 3 | diagciso.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | diagciso.e | . . . 4 ⊢ 𝐸 = (CatCat‘𝑈) | |
| 5 | 4 | catccat 18012 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝐸 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 7 | diagciso.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 8 | diagffth.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 9 | 7, 8 | elind 4150 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∩ Cat)) |
| 10 | 4, 2, 3 | catcbas 18005 | . . 3 ⊢ (𝜑 → (Base‘𝐸) = (𝑈 ∩ Cat)) |
| 11 | 9, 10 | eleqtrrd 2834 | . 2 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐸)) |
| 12 | diagciso.1 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑈) | |
| 13 | diagffth.q | . . . . 5 ⊢ 𝑄 = (𝐷 FuncCat 𝐶) | |
| 14 | diagffth.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 15 | 14 | termccd 49510 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 16 | 13, 15, 8 | fuccat 17877 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 17 | 12, 16 | elind 4150 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝑈 ∩ Cat)) |
| 18 | 17, 10 | eleqtrrd 2834 | . 2 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝐸)) |
| 19 | eqid 2731 | . . 3 ⊢ (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷) | |
| 20 | 8, 14, 13, 4, 3, 7, 12, 1, 19 | diagciso 49570 | . 2 ⊢ (𝜑 → (𝐶Δfunc𝐷) ∈ (𝐶(Iso‘𝐸)𝑄)) |
| 21 | 1, 2, 6, 11, 18, 20 | brcici 17704 | 1 ⊢ (𝜑 → 𝐶( ≃𝑐 ‘𝐸)𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Catccat 17567 Isociso 17650 ≃𝑐 ccic 17699 FuncCat cfuc 17849 CatCatccatc 18002 Δfunccdiag 18115 TermCatctermc 49503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-cat 17571 df-cid 17572 df-sect 17651 df-inv 17652 df-iso 17653 df-cic 17700 df-func 17762 df-idfu 17763 df-cofu 17764 df-full 17810 df-fth 17811 df-nat 17850 df-fuc 17851 df-catc 18003 df-xpc 18075 df-1stf 18076 df-curf 18117 df-diag 18119 df-thinc 49449 df-termc 49504 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |