Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diagcic Structured version   Visualization version   GIF version

Theorem diagcic 49526
Description: Any category 𝐶 is isomorphic to the category of functors from a terminal category to 𝐶. See also the "Properties" section of https://ncatlab.org/nlab/show/terminal+category. Therefore the number of categories isomorphic to a non-empty category is at least the number of singletons, so large (snnex 7698) that these isomorphic categories form a proper class. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
diagffth.c (𝜑𝐶 ∈ Cat)
diagffth.d (𝜑𝐷 ∈ TermCat)
diagffth.q 𝑄 = (𝐷 FuncCat 𝐶)
diagciso.e 𝐸 = (CatCat‘𝑈)
diagciso.u (𝜑𝑈𝑉)
diagciso.c (𝜑𝐶𝑈)
diagciso.1 (𝜑𝑄𝑈)
Assertion
Ref Expression
diagcic (𝜑𝐶( ≃𝑐𝐸)𝑄)

Proof of Theorem diagcic
StepHypRef Expression
1 eqid 2729 . 2 (Iso‘𝐸) = (Iso‘𝐸)
2 eqid 2729 . 2 (Base‘𝐸) = (Base‘𝐸)
3 diagciso.u . . 3 (𝜑𝑈𝑉)
4 diagciso.e . . . 4 𝐸 = (CatCat‘𝑈)
54catccat 18033 . . 3 (𝑈𝑉𝐸 ∈ Cat)
63, 5syl 17 . 2 (𝜑𝐸 ∈ Cat)
7 diagciso.c . . . 4 (𝜑𝐶𝑈)
8 diagffth.c . . . 4 (𝜑𝐶 ∈ Cat)
97, 8elind 4153 . . 3 (𝜑𝐶 ∈ (𝑈 ∩ Cat))
104, 2, 3catcbas 18026 . . 3 (𝜑 → (Base‘𝐸) = (𝑈 ∩ Cat))
119, 10eleqtrrd 2831 . 2 (𝜑𝐶 ∈ (Base‘𝐸))
12 diagciso.1 . . . 4 (𝜑𝑄𝑈)
13 diagffth.q . . . . 5 𝑄 = (𝐷 FuncCat 𝐶)
14 diagffth.d . . . . . 6 (𝜑𝐷 ∈ TermCat)
1514termccd 49465 . . . . 5 (𝜑𝐷 ∈ Cat)
1613, 15, 8fuccat 17898 . . . 4 (𝜑𝑄 ∈ Cat)
1712, 16elind 4153 . . 3 (𝜑𝑄 ∈ (𝑈 ∩ Cat))
1817, 10eleqtrrd 2831 . 2 (𝜑𝑄 ∈ (Base‘𝐸))
19 eqid 2729 . . 3 (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷)
208, 14, 13, 4, 3, 7, 12, 1, 19diagciso 49525 . 2 (𝜑 → (𝐶Δfunc𝐷) ∈ (𝐶(Iso‘𝐸)𝑄))
211, 2, 6, 11, 18, 20brcici 17725 1 (𝜑𝐶( ≃𝑐𝐸)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3904   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  Catccat 17588  Isociso 17671  𝑐 ccic 17720   FuncCat cfuc 17870  CatCatccatc 18023  Δfunccdiag 18136  TermCatctermc 49458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-sect 17672  df-inv 17673  df-iso 17674  df-cic 17721  df-func 17783  df-idfu 17784  df-cofu 17785  df-full 17831  df-fth 17832  df-nat 17871  df-fuc 17872  df-catc 18024  df-xpc 18096  df-1stf 18097  df-curf 18138  df-diag 18140  df-thinc 49404  df-termc 49459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator