| Step | Hyp | Ref
| Expression |
| 1 | | initoeu2.i |
. 2
⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| 2 | | initoeu1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 3 | | ciclcl 17846 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐
‘𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶)) |
| 4 | 2, 3 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶)) |
| 5 | | cicrcl 17847 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐
‘𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶)) |
| 6 | 2, 5 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶)) |
| 7 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
| 8 | | cicsym 17848 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐
‘𝐶)𝐵) → 𝐵( ≃𝑐 ‘𝐶)𝐴) |
| 9 | 7, 8 | sylan 580 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → 𝐵( ≃𝑐 ‘𝐶)𝐴) |
| 10 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
| 11 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 12 | | simprr 773 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶)) |
| 13 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶)) |
| 14 | 10, 11, 7, 12, 13 | cic 17843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐 ‘𝐶)𝐴 ↔ ∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴))) |
| 15 | | initoeu1.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) |
| 16 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 17 | 11, 16, 2 | isinitoi 18044 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 ∈ (InitO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎))) |
| 18 | 15, 17 | mpdan 687 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎))) |
| 19 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑏 → (𝐴(Hom ‘𝐶)𝑎) = (𝐴(Hom ‘𝐶)𝑏)) |
| 20 | 19 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑏 → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏))) |
| 21 | 20 | eubidv 2586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑏 → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏))) |
| 22 | 21 | rspcva 3620 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)) |
| 23 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎℎ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) |
| 24 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑓 ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) |
| 25 | | eleq1w 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = ℎ → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) |
| 26 | 23, 24, 25 | cbveuw 2606 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∃!ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) |
| 27 | | euex 2577 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃!ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) |
| 28 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
| 29 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (Base‘𝐶)) |
| 30 | 29 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶)) |
| 31 | | simprll 779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶)) |
| 32 | 11, 16, 10, 28, 30, 31 | isohom 17820 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝐵(Iso‘𝐶)𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴)) |
| 33 | 32 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴)) |
| 34 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 35 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐶 ∈ Cat) |
| 36 | 30 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐵 ∈ (Base‘𝐶)) |
| 37 | 31 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐴 ∈ (Base‘𝐶)) |
| 38 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝑏 ∈ (Base‘𝐶)) |
| 39 | 38 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑏 ∈ (Base‘𝐶)) |
| 40 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴)) |
| 41 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) |
| 42 | 11, 16, 34, 35, 36, 37, 39, 40, 41 | catcocl 17728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) |
| 43 | | simp-4l 783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝜑) |
| 44 | | df-3an 1089 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ↔ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) |
| 45 | 44 | biimpri 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶))) |
| 46 | 45 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶))) |
| 47 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) |
| 48 | 47 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) |
| 49 | 41 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) |
| 50 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) |
| 51 | 2, 15, 11, 16, 10, 34 | initoeu2lem2 18060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
| 52 | 43, 46, 48, 49, 50, 51 | syl113anc 1384 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
| 53 | 42, 52 | mpdan 687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
| 54 | 53 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → ((𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
| 55 | 33, 54 | mpand 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
| 56 | 55 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))) |
| 57 | 56 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))) |
| 58 | 57 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
| 59 | 58 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
| 60 | 59 | expd 415 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑏 ∈ (Base‘𝐶) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
| 61 | 60 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
| 62 | 61 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
| 63 | 62 | exlimiv 1930 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
| 64 | 27, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃!ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
| 65 | 26, 64 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
| 66 | 65 | pm2.43i 52 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
| 67 | 66 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
| 68 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
| 69 | 22, 68 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))) |
| 70 | 69 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
| 71 | 70 | com15 101 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
| 72 | 71 | adantld 490 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
| 73 | 18, 72 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))) |
| 74 | 73 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
| 75 | 74 | exlimdv 1933 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
| 76 | 14, 75 | sylbid 240 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐 ‘𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
| 77 | 76 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → (𝐵( ≃𝑐 ‘𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
| 78 | 9, 77 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
| 79 | 78 | an32s 652 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
| 80 | 79 | ralrimiv 3145 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)) |
| 81 | 2 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
| 82 | | simprr 773 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶)) |
| 83 | 11, 16, 81, 82 | isinito 18041 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
| 84 | 80, 83 | mpbird 257 |
. . . 4
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (InitO‘𝐶)) |
| 85 | 84 | ex 412 |
. . 3
⊢ ((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (InitO‘𝐶))) |
| 86 | 4, 6, 85 | mp2and 699 |
. 2
⊢ ((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → 𝐵 ∈ (InitO‘𝐶)) |
| 87 | 1, 86 | mpdan 687 |
1
⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) |