Step | Hyp | Ref
| Expression |
1 | | initoeu2.i |
. 2
⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
2 | | initoeu1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
3 | | ciclcl 17514 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐
‘𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶)) |
4 | 2, 3 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶)) |
5 | | cicrcl 17515 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐
‘𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶)) |
6 | 2, 5 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶)) |
7 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
8 | | cicsym 17516 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐
‘𝐶)𝐵) → 𝐵( ≃𝑐 ‘𝐶)𝐴) |
9 | 7, 8 | sylan 580 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → 𝐵( ≃𝑐 ‘𝐶)𝐴) |
10 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
11 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝐶) =
(Base‘𝐶) |
12 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶)) |
13 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶)) |
14 | 10, 11, 7, 12, 13 | cic 17511 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐 ‘𝐶)𝐴 ↔ ∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴))) |
15 | | initoeu1.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) |
16 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
17 | 11, 16, 2 | isinitoi 17714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 ∈ (InitO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎))) |
18 | 15, 17 | mpdan 684 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎))) |
19 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑏 → (𝐴(Hom ‘𝐶)𝑎) = (𝐴(Hom ‘𝐶)𝑏)) |
20 | 19 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑏 → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏))) |
21 | 20 | eubidv 2586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑏 → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏))) |
22 | 21 | rspcva 3559 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)) |
23 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎℎ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) |
24 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑓 ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) |
25 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = ℎ → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) |
26 | 23, 24, 25 | cbveuw 2607 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∃!ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) |
27 | | euex 2577 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃!ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) |
28 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
29 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (Base‘𝐶)) |
30 | 29 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶)) |
31 | | simprll 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶)) |
32 | 11, 16, 10, 28, 30, 31 | isohom 17488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝐵(Iso‘𝐶)𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴)) |
33 | 32 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴)) |
34 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(comp‘𝐶) =
(comp‘𝐶) |
35 | 28 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐶 ∈ Cat) |
36 | 30 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐵 ∈ (Base‘𝐶)) |
37 | 31 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐴 ∈ (Base‘𝐶)) |
38 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝑏 ∈ (Base‘𝐶)) |
39 | 38 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑏 ∈ (Base‘𝐶)) |
40 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴)) |
41 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) |
42 | 11, 16, 34, 35, 36, 37, 39, 40, 41 | catcocl 17394 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) |
43 | | simp-4l 780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝜑) |
44 | | df-3an 1088 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ↔ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) |
45 | 44 | biimpri 227 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶))) |
46 | 45 | ad4antlr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶))) |
47 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) |
48 | 47 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) |
49 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) |
50 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) |
51 | 2, 15, 11, 16, 10, 34 | initoeu2lem2 17730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
52 | 43, 46, 48, 49, 50, 51 | syl113anc 1381 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ (ℎ(〈𝐵, 𝐴〉(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
53 | 42, 52 | mpdan 684 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
54 | 53 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → ((𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
55 | 33, 54 | mpand 692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
56 | 55 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))) |
57 | 56 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))) |
58 | 57 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
59 | 58 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
60 | 59 | expd 416 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑏 ∈ (Base‘𝐶) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
61 | 60 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
62 | 61 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
63 | 62 | exlimiv 1933 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
64 | 27, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃!ℎ ℎ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
65 | 26, 64 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))) |
66 | 65 | pm2.43i 52 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
67 | 66 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
68 | 67 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
69 | 22, 68 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))) |
70 | 69 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
71 | 70 | com15 101 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
72 | 71 | adantld 491 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))) |
73 | 18, 72 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))) |
74 | 73 | imp 407 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
75 | 74 | exlimdv 1936 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
76 | 14, 75 | sylbid 239 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐 ‘𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
77 | 76 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → (𝐵( ≃𝑐 ‘𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))) |
78 | 9, 77 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
79 | 78 | an32s 649 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
80 | 79 | ralrimiv 3102 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)) |
81 | 2 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
82 | | simprr 770 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶)) |
83 | 11, 16, 81, 82 | isinito 17711 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))) |
84 | 80, 83 | mpbird 256 |
. . . 4
⊢ (((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (InitO‘𝐶)) |
85 | 84 | ex 413 |
. . 3
⊢ ((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (InitO‘𝐶))) |
86 | 4, 6, 85 | mp2and 696 |
. 2
⊢ ((𝜑 ∧ 𝐴( ≃𝑐 ‘𝐶)𝐵) → 𝐵 ∈ (InitO‘𝐶)) |
87 | 1, 86 | mpdan 684 |
1
⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) |