MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2 Structured version   Visualization version   GIF version

Theorem initoeu2 17967
Description: Initial objects are essentially unique, if A is an initial object, then so is every object that is isomorphic to A. Proposition 7.3 (2) in [Adamek] p. 102. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2.i (𝜑𝐴( ≃𝑐𝐶)𝐵)
Assertion
Ref Expression
initoeu2 (𝜑𝐵 ∈ (InitO‘𝐶))

Proof of Theorem initoeu2
Dummy variables 𝑎 𝑔 𝑏 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initoeu2.i . 2 (𝜑𝐴( ≃𝑐𝐶)𝐵)
2 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
3 ciclcl 17747 . . . 4 ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶))
42, 3sylan 579 . . 3 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶))
5 cicrcl 17748 . . . 4 ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶))
62, 5sylan 579 . . 3 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶))
72adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
8 cicsym 17749 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐵( ≃𝑐𝐶)𝐴)
97, 8sylan 579 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐵( ≃𝑐𝐶)𝐴)
10 eqid 2724 . . . . . . . . . . 11 (Iso‘𝐶) = (Iso‘𝐶)
11 eqid 2724 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
12 simprr 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
13 simprl 768 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
1410, 11, 7, 12, 13cic 17744 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐𝐶)𝐴 ↔ ∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)))
15 initoeu1.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (InitO‘𝐶))
16 eqid 2724 . . . . . . . . . . . . . . 15 (Hom ‘𝐶) = (Hom ‘𝐶)
1711, 16, 2isinitoi 17950 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (InitO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)))
1815, 17mpdan 684 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)))
19 oveq2 7409 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑏 → (𝐴(Hom ‘𝐶)𝑎) = (𝐴(Hom ‘𝐶)𝑏))
2019eleq2d 2811 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
2120eubidv 2572 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
2221rspcva 3602 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏))
23 nfv 1909 . . . . . . . . . . . . . . . . . . . . . 22 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)
24 nfv 1909 . . . . . . . . . . . . . . . . . . . . . 22 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)
25 eleq1w 2808 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∈ (𝐴(Hom ‘𝐶)𝑏)))
2623, 24, 25cbveuw 2593 . . . . . . . . . . . . . . . . . . . . 21 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∃! ∈ (𝐴(Hom ‘𝐶)𝑏))
27 euex 2563 . . . . . . . . . . . . . . . . . . . . . 22 (∃! ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃ ∈ (𝐴(Hom ‘𝐶)𝑏))
282adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
29 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (Base‘𝐶))
3029ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
31 simprll 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
3211, 16, 10, 28, 30, 31isohom 17721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝐵(Iso‘𝐶)𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴))
3332sselda 3974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴))
34 eqid 2724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (comp‘𝐶) = (comp‘𝐶)
3528ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐶 ∈ Cat)
3630ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐵 ∈ (Base‘𝐶))
3731ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐴 ∈ (Base‘𝐶))
38 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝑏 ∈ (Base‘𝐶))
3938ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑏 ∈ (Base‘𝐶))
40 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴))
41 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → ∈ (𝐴(Hom ‘𝐶)𝑏))
4211, 16, 34, 35, 36, 37, 39, 40, 41catcocl 17627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))
43 simp-4l 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝜑)
44 df-3an 1086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ↔ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)))
4544biimpri 227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)))
4645ad4antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)))
47 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴))
4847ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴))
4941adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → ∈ (𝐴(Hom ‘𝐶)𝑏))
50 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))
512, 15, 11, 16, 10, 34initoeu2lem2 17966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
5243, 46, 48, 49, 50, 51syl113anc 1379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
5342, 52mpdan 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
5453ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → ((𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
5533, 54mpand 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
5655ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
5756com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
5857ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
5958com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6059expd 415 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑏 ∈ (Base‘𝐶) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6160com24 95 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6261com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6362exlimiv 1925 . . . . . . . . . . . . . . . . . . . . . 22 (∃ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6427, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∃! ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6526, 64sylbi 216 . . . . . . . . . . . . . . . . . . . 20 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6665pm2.43i 52 . . . . . . . . . . . . . . . . . . 19 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6766com12 32 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6867adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6922, 68mpd 15 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
7069ex 412 . . . . . . . . . . . . . . 15 (𝑏 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7170com15 101 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7271adantld 490 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7318, 72mpd 15 . . . . . . . . . . . 12 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
7473imp 406 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
7574exlimdv 1928 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
7614, 75sylbid 239 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
7776adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐𝐶)𝐵) → (𝐵( ≃𝑐𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
789, 77mpd 15 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐𝐶)𝐵) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
7978an32s 649 . . . . . 6 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
8079ralrimiv 3137 . . . . 5 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))
812ad2antrr 723 . . . . . 6 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
82 simprr 770 . . . . . 6 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
8311, 16, 81, 82isinito 17947 . . . . 5 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
8480, 83mpbird 257 . . . 4 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (InitO‘𝐶))
8584ex 412 . . 3 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (InitO‘𝐶)))
864, 6, 85mp2and 696 . 2 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → 𝐵 ∈ (InitO‘𝐶))
871, 86mpdan 684 1 (𝜑𝐵 ∈ (InitO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wex 1773  wcel 2098  ∃!weu 2554  wral 3053  cop 4626   class class class wbr 5138  cfv 6533  (class class class)co 7401  Basecbs 17142  Hom chom 17206  compcco 17207  Catccat 17606  Isociso 17691  𝑐 ccic 17740  InitOcinito 17932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-supp 8141  df-cat 17610  df-cid 17611  df-sect 17692  df-inv 17693  df-iso 17694  df-cic 17741  df-inito 17935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator