Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2 Structured version   Visualization version   GIF version

Theorem initoeu2 17271
 Description: Initial objects are essentially unique, if A is an initial object, then so is every object that is isomorphic to A. Proposition 7.3 (2) in [Adamek] p. 102. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2.i (𝜑𝐴( ≃𝑐𝐶)𝐵)
Assertion
Ref Expression
initoeu2 (𝜑𝐵 ∈ (InitO‘𝐶))

Proof of Theorem initoeu2
Dummy variables 𝑎 𝑔 𝑏 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initoeu2.i . 2 (𝜑𝐴( ≃𝑐𝐶)𝐵)
2 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
3 ciclcl 17067 . . . 4 ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶))
42, 3sylan 583 . . 3 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → 𝐴 ∈ (Base‘𝐶))
5 cicrcl 17068 . . . 4 ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶))
62, 5sylan 583 . . 3 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → 𝐵 ∈ (Base‘𝐶))
72adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
8 cicsym 17069 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐵( ≃𝑐𝐶)𝐴)
97, 8sylan 583 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐𝐶)𝐵) → 𝐵( ≃𝑐𝐶)𝐴)
10 eqid 2801 . . . . . . . . . . 11 (Iso‘𝐶) = (Iso‘𝐶)
11 eqid 2801 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
12 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
13 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
1410, 11, 7, 12, 13cic 17064 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐𝐶)𝐴 ↔ ∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)))
15 initoeu1.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (InitO‘𝐶))
16 eqid 2801 . . . . . . . . . . . . . . 15 (Hom ‘𝐶) = (Hom ‘𝐶)
1711, 16, 2isinitoi 17258 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (InitO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)))
1815, 17mpdan 686 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)))
19 oveq2 7147 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑏 → (𝐴(Hom ‘𝐶)𝑎) = (𝐴(Hom ‘𝐶)𝑏))
2019eleq2d 2878 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
2120eubidv 2650 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
2221rspcva 3572 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏))
23 nfv 1915 . . . . . . . . . . . . . . . . . . . . . 22 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)
24 nfv 1915 . . . . . . . . . . . . . . . . . . . . . 22 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)
25 eleq1w 2875 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∈ (𝐴(Hom ‘𝐶)𝑏)))
2623, 24, 25cbveuw 2669 . . . . . . . . . . . . . . . . . . . . 21 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∃! ∈ (𝐴(Hom ‘𝐶)𝑏))
27 euex 2640 . . . . . . . . . . . . . . . . . . . . . 22 (∃! ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃ ∈ (𝐴(Hom ‘𝐶)𝑏))
282adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
29 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (Base‘𝐶))
3029ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
31 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
3211, 16, 10, 28, 30, 31isohom 17041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝐵(Iso‘𝐶)𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴))
3332sselda 3918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴))
34 eqid 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (comp‘𝐶) = (comp‘𝐶)
3528ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐶 ∈ Cat)
3630ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐵 ∈ (Base‘𝐶))
3731ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝐴 ∈ (Base‘𝐶))
38 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → 𝑏 ∈ (Base‘𝐶))
3938ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑏 ∈ (Base‘𝐶))
40 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → 𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴))
41 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → ∈ (𝐴(Hom ‘𝐶)𝑏))
4211, 16, 34, 35, 36, 37, 39, 40, 41catcocl 16951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))
43 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝜑)
44 df-3an 1086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ↔ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)))
4544biimpri 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)))
4645ad4antlr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)))
47 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴))
4847ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴))
4941adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → ∈ (𝐴(Hom ‘𝐶)𝑏))
50 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))
512, 15, 11, 16, 10, 34initoeu2lem2 17270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
5243, 46, 48, 49, 50, 51syl113anc 1379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) ∧ ((⟨𝐵, 𝐴⟩(comp‘𝐶)𝑏)𝑘) ∈ (𝐵(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
5342, 52mpdan 686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) ∧ (𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
5453ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → ((𝑘 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ ∈ (𝐴(Hom ‘𝐶)𝑏)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
5533, 54mpand 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) ∧ 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴)) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
5655ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
5756com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶))) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
5857ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
5958com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6059expd 419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑏 ∈ (Base‘𝐶) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6160com24 95 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6261com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6362exlimiv 1931 . . . . . . . . . . . . . . . . . . . . . 22 (∃ ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6427, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∃! ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6526, 64sylbi 220 . . . . . . . . . . . . . . . . . . . 20 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))))
6665pm2.43i 52 . . . . . . . . . . . . . . . . . . 19 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝑏 ∈ (Base‘𝐶) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6766com12 32 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6867adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
6922, 68mpd 15 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
7069ex 416 . . . . . . . . . . . . . . 15 (𝑏 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝜑 → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7170com15 101 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7271adantld 494 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑎)) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))))
7318, 72mpd 15 . . . . . . . . . . . 12 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))))
7473imp 410 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
7574exlimdv 1934 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑘 𝑘 ∈ (𝐵(Iso‘𝐶)𝐴) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
7614, 75sylbid 243 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵( ≃𝑐𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
7776adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐𝐶)𝐵) → (𝐵( ≃𝑐𝐶)𝐴 → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))))
789, 77mpd 15 . . . . . . 7 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝐴( ≃𝑐𝐶)𝐵) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
7978an32s 651 . . . . . 6 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑏 ∈ (Base‘𝐶) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
8079ralrimiv 3151 . . . . 5 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏))
812ad2antrr 725 . . . . . 6 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
82 simprr 772 . . . . . 6 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
8311, 16, 81, 82isinito 17255 . . . . 5 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐵 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑏)))
8480, 83mpbird 260 . . . 4 (((𝜑𝐴( ≃𝑐𝐶)𝐵) ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (InitO‘𝐶))
8584ex 416 . . 3 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → ((𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶)) → 𝐵 ∈ (InitO‘𝐶)))
864, 6, 85mp2and 698 . 2 ((𝜑𝐴( ≃𝑐𝐶)𝐵) → 𝐵 ∈ (InitO‘𝐶))
871, 86mpdan 686 1 (𝜑𝐵 ∈ (InitO‘𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084  ∃wex 1781   ∈ wcel 2112  ∃!weu 2631  ∀wral 3109  ⟨cop 4534   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  Basecbs 16478  Hom chom 16571  compcco 16572  Catccat 16930  Isociso 17011   ≃𝑐 ccic 17060  InitOcinito 17243 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-supp 7818  df-cat 16934  df-cid 16935  df-sect 17012  df-inv 17013  df-iso 17014  df-cic 17061  df-inito 17246 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator