Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  func0g Structured version   Visualization version   GIF version

Theorem func0g 49214
Description: The source category of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
func0g.a 𝐴 = (Base‘𝐶)
func0g.b 𝐵 = (Base‘𝐷)
func0g.d (𝜑𝐵 = ∅)
func0g.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
func0g (𝜑𝐴 = ∅)

Proof of Theorem func0g
StepHypRef Expression
1 func0g.d . 2 (𝜑𝐵 = ∅)
2 func0g.a . . . 4 𝐴 = (Base‘𝐶)
3 func0g.b . . . 4 𝐵 = (Base‘𝐷)
4 func0g.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
52, 3, 4funcf1 17775 . . 3 (𝜑𝐹:𝐴𝐵)
65f002 48978 . 2 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
71, 6mpd 15 1 (𝜑𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  c0 4282   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122   Func cfunc 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-ixp 8828  df-func 17767
This theorem is referenced by:  func0g2  49215
  Copyright terms: Public domain W3C validator