Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  func0g Structured version   Visualization version   GIF version

Theorem func0g 49006
Description: The source cateogry of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
func0g.a 𝐴 = (Base‘𝐶)
func0g.b 𝐵 = (Base‘𝐷)
func0g.d (𝜑𝐵 = ∅)
func0g.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
func0g (𝜑𝐴 = ∅)

Proof of Theorem func0g
StepHypRef Expression
1 func0g.d . 2 (𝜑𝐵 = ∅)
2 func0g.a . . . 4 𝐴 = (Base‘𝐶)
3 func0g.b . . . 4 𝐵 = (Base‘𝐷)
4 func0g.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
52, 3, 4funcf1 17834 . . 3 (𝜑𝐹:𝐴𝐵)
65f002 48774 . 2 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
71, 6mpd 15 1 (𝜑𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  c0 4304   class class class wbr 5115  cfv 6519  (class class class)co 7394  Basecbs 17185   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-map 8805  df-ixp 8875  df-func 17826
This theorem is referenced by:  func0g2  49007
  Copyright terms: Public domain W3C validator