| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > func0g | Structured version Visualization version GIF version | ||
| Description: The source cateogry of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| func0g.a | ⊢ 𝐴 = (Base‘𝐶) |
| func0g.b | ⊢ 𝐵 = (Base‘𝐷) |
| func0g.d | ⊢ (𝜑 → 𝐵 = ∅) |
| func0g.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| func0g | ⊢ (𝜑 → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | func0g.d | . 2 ⊢ (𝜑 → 𝐵 = ∅) | |
| 2 | func0g.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
| 3 | func0g.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 4 | func0g.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 5 | 2, 3, 4 | funcf1 17912 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 6 | 5 | f002 48768 | . 2 ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
| 7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∅c0 4332 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Func cfunc 17900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-ixp 8939 df-func 17904 |
| This theorem is referenced by: func0g2 48939 |
| Copyright terms: Public domain | W3C validator |