Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  func0g Structured version   Visualization version   GIF version

Theorem func0g 49078
Description: The source category of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
func0g.a 𝐴 = (Base‘𝐶)
func0g.b 𝐵 = (Base‘𝐷)
func0g.d (𝜑𝐵 = ∅)
func0g.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
func0g (𝜑𝐴 = ∅)

Proof of Theorem func0g
StepHypRef Expression
1 func0g.d . 2 (𝜑𝐵 = ∅)
2 func0g.a . . . 4 𝐴 = (Base‘𝐶)
3 func0g.b . . . 4 𝐵 = (Base‘𝐷)
4 func0g.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
52, 3, 4funcf1 17828 . . 3 (𝜑𝐹:𝐴𝐵)
65f002 48842 . 2 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
71, 6mpd 15 1 (𝜑𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179   Func cfunc 17816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ixp 8871  df-func 17820
This theorem is referenced by:  func0g2  49079
  Copyright terms: Public domain W3C validator