Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfinito4 Structured version   Visualization version   GIF version

Theorem dfinito4 49199
Description: An alternate definition of df-inito 18001 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 18001. (Contributed by Zhi Wang, 23-Oct-2025.)
Assertion
Ref Expression
dfinito4 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅))
Distinct variable group:   𝑐,𝑑,𝑓

Proof of Theorem dfinito4
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initofn 18004 . . 3 InitO Fn Cat
2 ovex 7446 . . . . . . 7 (𝑓(𝑐UP𝑑)∅) ∈ V
32dmex 7913 . . . . . 6 dom (𝑓(𝑐UP𝑑)∅) ∈ V
43csbex 5291 . . . . 5 ((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅) ∈ V
54csbex 5291 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅) ∈ V
6 eqid 2734 . . . 4 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅)) = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅))
75, 6fnmpti 6691 . . 3 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅)) Fn Cat
8 eqfnfv 7031 . . 3 ((InitO Fn Cat ∧ (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅)) Fn Cat) → (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅))‘𝑒)))
91, 7, 8mp2an 692 . 2 (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅))‘𝑒))
10 eqid 2734 . . . . . 6 (SetCat‘1o) = (SetCat‘1o)
11 eqid 2734 . . . . . 6 ((1st ‘((SetCat‘1ofunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅)
1210, 11isinito3 49198 . . . . 5 (𝑥 ∈ (InitO‘𝑒) ↔ 𝑥 ∈ dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒UP(SetCat‘1o))∅))
1312eqriv 2731 . . . 4 (InitO‘𝑒) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒UP(SetCat‘1o))∅)
14 fvex 6899 . . . . 5 (SetCat‘1o) ∈ V
15 fvexd 6901 . . . . . 6 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) ∈ V)
16 simpl 482 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑑 = (SetCat‘1o))
1716oveq2d 7429 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑒UP𝑑) = (𝑒UP(SetCat‘1o)))
18 simpr 484 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅))
1916fvoveq1d 7435 . . . . . . . . . 10 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (1st ‘(𝑑Δfunc𝑒)) = (1st ‘((SetCat‘1ofunc𝑒)))
2019fveq1d 6888 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ((1st ‘(𝑑Δfunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
2118, 20eqtrd 2769 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
22 eqidd 2735 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ∅ = ∅)
2317, 21, 22oveq123d 7434 . . . . . . 7 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑓(𝑒UP𝑑)∅) = (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒UP(SetCat‘1o))∅))
2423dmeqd 5896 . . . . . 6 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → dom (𝑓(𝑒UP𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒UP(SetCat‘1o))∅))
2515, 24csbied 3915 . . . . 5 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒UP𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒UP(SetCat‘1o))∅))
2614, 25csbie 3914 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒UP𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒UP(SetCat‘1o))∅)
2713, 26eqtr4i 2760 . . 3 (InitO‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒UP𝑑)∅)
28 oveq2 7421 . . . . . . . 8 (𝑐 = 𝑒 → (𝑑Δfunc𝑐) = (𝑑Δfunc𝑒))
2928fveq2d 6890 . . . . . . 7 (𝑐 = 𝑒 → (1st ‘(𝑑Δfunc𝑐)) = (1st ‘(𝑑Δfunc𝑒)))
3029fveq1d 6888 . . . . . 6 (𝑐 = 𝑒 → ((1st ‘(𝑑Δfunc𝑐))‘∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅))
31 oveq1 7420 . . . . . . . 8 (𝑐 = 𝑒 → (𝑐UP𝑑) = (𝑒UP𝑑))
3231oveqd 7430 . . . . . . 7 (𝑐 = 𝑒 → (𝑓(𝑐UP𝑑)∅) = (𝑓(𝑒UP𝑑)∅))
3332dmeqd 5896 . . . . . 6 (𝑐 = 𝑒 → dom (𝑓(𝑐UP𝑑)∅) = dom (𝑓(𝑒UP𝑑)∅))
3430, 33csbeq12dv 3888 . . . . 5 (𝑐 = 𝑒((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒UP𝑑)∅))
3534csbeq2dv 3886 . . . 4 (𝑐 = 𝑒(SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒UP𝑑)∅))
36 ovex 7446 . . . . . . 7 (𝑓(𝑒UP𝑑)∅) ∈ V
3736dmex 7913 . . . . . 6 dom (𝑓(𝑒UP𝑑)∅) ∈ V
3837csbex 5291 . . . . 5 ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒UP𝑑)∅) ∈ V
3938csbex 5291 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒UP𝑑)∅) ∈ V
4035, 6, 39fvmpt 6996 . . 3 (𝑒 ∈ Cat → ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅))‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒UP𝑑)∅))
4127, 40eqtr4id 2788 . 2 (𝑒 ∈ Cat → (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅))‘𝑒))
429, 41mprgbir 3057 1 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐UP𝑑)∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  csb 3879  c0 4313  cmpt 5205  dom cdm 5665   Fn wfn 6536  cfv 6541  (class class class)co 7413  1st c1st 7994  1oc1o 8481  Catccat 17679  InitOcinito 17998  SetCatcsetc 18092  Δfunccdiag 18228  UPcup 48957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-cid 17684  df-func 17875  df-nat 17963  df-fuc 17964  df-inito 18001  df-setc 18093  df-xpc 18188  df-1stf 18189  df-curf 18230  df-diag 18232  df-up 48958  df-thinc 49119  df-termc 49172
This theorem is referenced by:  dftermo4  49200
  Copyright terms: Public domain W3C validator