Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfinito4 Structured version   Visualization version   GIF version

Theorem dfinito4 49463
Description: An alternate definition of df-inito 17922 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17922. (Contributed by Zhi Wang, 23-Oct-2025.)
Assertion
Ref Expression
dfinito4 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
Distinct variable group:   𝑐,𝑑,𝑓

Proof of Theorem dfinito4
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initofn 17925 . . 3 InitO Fn Cat
2 ovex 7402 . . . . . . 7 (𝑓(𝑐 UP 𝑑)∅) ∈ V
32dmex 7865 . . . . . 6 dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
43csbex 5261 . . . . 5 ((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
54csbex 5261 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
6 eqid 2729 . . . 4 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
75, 6fnmpti 6643 . . 3 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat
8 eqfnfv 6985 . . 3 ((InitO Fn Cat ∧ (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat) → (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒)))
91, 7, 8mp2an 692 . 2 (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒))
10 eqid 2729 . . . . . 6 (SetCat‘1o) = (SetCat‘1o)
11 eqid 2729 . . . . . 6 ((1st ‘((SetCat‘1ofunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅)
1210, 11isinito3 49462 . . . . 5 (𝑥 ∈ (InitO‘𝑒) ↔ 𝑥 ∈ dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
1312eqriv 2726 . . . 4 (InitO‘𝑒) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅)
14 fvex 6853 . . . . 5 (SetCat‘1o) ∈ V
15 fvexd 6855 . . . . . 6 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) ∈ V)
16 simpl 482 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑑 = (SetCat‘1o))
1716oveq2d 7385 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑒 UP 𝑑) = (𝑒 UP (SetCat‘1o)))
18 simpr 484 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅))
1916fvoveq1d 7391 . . . . . . . . . 10 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (1st ‘(𝑑Δfunc𝑒)) = (1st ‘((SetCat‘1ofunc𝑒)))
2019fveq1d 6842 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ((1st ‘(𝑑Δfunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
2118, 20eqtrd 2764 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
22 eqidd 2730 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ∅ = ∅)
2317, 21, 22oveq123d 7390 . . . . . . 7 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑓(𝑒 UP 𝑑)∅) = (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2423dmeqd 5859 . . . . . 6 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2515, 24csbied 3895 . . . . 5 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2614, 25csbie 3894 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅)
2713, 26eqtr4i 2755 . . 3 (InitO‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅)
28 oveq2 7377 . . . . . . . 8 (𝑐 = 𝑒 → (𝑑Δfunc𝑐) = (𝑑Δfunc𝑒))
2928fveq2d 6844 . . . . . . 7 (𝑐 = 𝑒 → (1st ‘(𝑑Δfunc𝑐)) = (1st ‘(𝑑Δfunc𝑒)))
3029fveq1d 6842 . . . . . 6 (𝑐 = 𝑒 → ((1st ‘(𝑑Δfunc𝑐))‘∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅))
31 oveq1 7376 . . . . . . . 8 (𝑐 = 𝑒 → (𝑐 UP 𝑑) = (𝑒 UP 𝑑))
3231oveqd 7386 . . . . . . 7 (𝑐 = 𝑒 → (𝑓(𝑐 UP 𝑑)∅) = (𝑓(𝑒 UP 𝑑)∅))
3332dmeqd 5859 . . . . . 6 (𝑐 = 𝑒 → dom (𝑓(𝑐 UP 𝑑)∅) = dom (𝑓(𝑒 UP 𝑑)∅))
3430, 33csbeq12dv 3868 . . . . 5 (𝑐 = 𝑒((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
3534csbeq2dv 3866 . . . 4 (𝑐 = 𝑒(SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
36 ovex 7402 . . . . . . 7 (𝑓(𝑒 UP 𝑑)∅) ∈ V
3736dmex 7865 . . . . . 6 dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
3837csbex 5261 . . . . 5 ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
3938csbex 5261 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
4035, 6, 39fvmpt 6950 . . 3 (𝑒 ∈ Cat → ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
4127, 40eqtr4id 2783 . 2 (𝑒 ∈ Cat → (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒))
429, 41mprgbir 3051 1 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  csb 3859  c0 4292  cmpt 5183  dom cdm 5631   Fn wfn 6494  cfv 6499  (class class class)co 7369  1st c1st 7945  1oc1o 8404  Catccat 17601  InitOcinito 17919  SetCatcsetc 18013  Δfunccdiag 18149   UP cup 49135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-func 17796  df-nat 17884  df-fuc 17885  df-inito 17922  df-setc 18014  df-xpc 18109  df-1stf 18110  df-curf 18151  df-diag 18153  df-up 49136  df-thinc 49380  df-termc 49435
This theorem is referenced by:  dftermo4  49464
  Copyright terms: Public domain W3C validator