Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfinito4 Structured version   Visualization version   GIF version

Theorem dfinito4 49506
Description: An alternate definition of df-inito 17910 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17910. (Contributed by Zhi Wang, 23-Oct-2025.)
Assertion
Ref Expression
dfinito4 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
Distinct variable group:   𝑐,𝑑,𝑓

Proof of Theorem dfinito4
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initofn 17913 . . 3 InitO Fn Cat
2 ovex 7386 . . . . . . 7 (𝑓(𝑐 UP 𝑑)∅) ∈ V
32dmex 7849 . . . . . 6 dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
43csbex 5253 . . . . 5 ((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
54csbex 5253 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
6 eqid 2729 . . . 4 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
75, 6fnmpti 6629 . . 3 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat
8 eqfnfv 6969 . . 3 ((InitO Fn Cat ∧ (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat) → (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒)))
91, 7, 8mp2an 692 . 2 (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒))
10 eqid 2729 . . . . . 6 (SetCat‘1o) = (SetCat‘1o)
11 eqid 2729 . . . . . 6 ((1st ‘((SetCat‘1ofunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅)
1210, 11isinito3 49505 . . . . 5 (𝑥 ∈ (InitO‘𝑒) ↔ 𝑥 ∈ dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
1312eqriv 2726 . . . 4 (InitO‘𝑒) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅)
14 fvex 6839 . . . . 5 (SetCat‘1o) ∈ V
15 fvexd 6841 . . . . . 6 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) ∈ V)
16 simpl 482 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑑 = (SetCat‘1o))
1716oveq2d 7369 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑒 UP 𝑑) = (𝑒 UP (SetCat‘1o)))
18 simpr 484 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅))
1916fvoveq1d 7375 . . . . . . . . . 10 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (1st ‘(𝑑Δfunc𝑒)) = (1st ‘((SetCat‘1ofunc𝑒)))
2019fveq1d 6828 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ((1st ‘(𝑑Δfunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
2118, 20eqtrd 2764 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
22 eqidd 2730 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ∅ = ∅)
2317, 21, 22oveq123d 7374 . . . . . . 7 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑓(𝑒 UP 𝑑)∅) = (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2423dmeqd 5852 . . . . . 6 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2515, 24csbied 3889 . . . . 5 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2614, 25csbie 3888 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅)
2713, 26eqtr4i 2755 . . 3 (InitO‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅)
28 oveq2 7361 . . . . . . . 8 (𝑐 = 𝑒 → (𝑑Δfunc𝑐) = (𝑑Δfunc𝑒))
2928fveq2d 6830 . . . . . . 7 (𝑐 = 𝑒 → (1st ‘(𝑑Δfunc𝑐)) = (1st ‘(𝑑Δfunc𝑒)))
3029fveq1d 6828 . . . . . 6 (𝑐 = 𝑒 → ((1st ‘(𝑑Δfunc𝑐))‘∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅))
31 oveq1 7360 . . . . . . . 8 (𝑐 = 𝑒 → (𝑐 UP 𝑑) = (𝑒 UP 𝑑))
3231oveqd 7370 . . . . . . 7 (𝑐 = 𝑒 → (𝑓(𝑐 UP 𝑑)∅) = (𝑓(𝑒 UP 𝑑)∅))
3332dmeqd 5852 . . . . . 6 (𝑐 = 𝑒 → dom (𝑓(𝑐 UP 𝑑)∅) = dom (𝑓(𝑒 UP 𝑑)∅))
3430, 33csbeq12dv 3862 . . . . 5 (𝑐 = 𝑒((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
3534csbeq2dv 3860 . . . 4 (𝑐 = 𝑒(SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
36 ovex 7386 . . . . . . 7 (𝑓(𝑒 UP 𝑑)∅) ∈ V
3736dmex 7849 . . . . . 6 dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
3837csbex 5253 . . . . 5 ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
3938csbex 5253 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
4035, 6, 39fvmpt 6934 . . 3 (𝑒 ∈ Cat → ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
4127, 40eqtr4id 2783 . 2 (𝑒 ∈ Cat → (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒))
429, 41mprgbir 3051 1 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  csb 3853  c0 4286  cmpt 5176  dom cdm 5623   Fn wfn 6481  cfv 6486  (class class class)co 7353  1st c1st 7929  1oc1o 8388  Catccat 17589  InitOcinito 17907  SetCatcsetc 18001  Δfunccdiag 18137   UP cup 49178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-cat 17593  df-cid 17594  df-func 17784  df-nat 17872  df-fuc 17873  df-inito 17910  df-setc 18002  df-xpc 18097  df-1stf 18098  df-curf 18139  df-diag 18141  df-up 49179  df-thinc 49423  df-termc 49478
This theorem is referenced by:  dftermo4  49507
  Copyright terms: Public domain W3C validator