| Step | Hyp | Ref
| Expression |
| 1 | | initofn 17925 |
. . 3
⊢ InitO Fn
Cat |
| 2 | | ovex 7402 |
. . . . . . 7
⊢ (𝑓(𝑐 UP 𝑑)∅) ∈ V |
| 3 | 2 | dmex 7865 |
. . . . . 6
⊢ dom
(𝑓(𝑐 UP 𝑑)∅) ∈ V |
| 4 | 3 | csbex 5261 |
. . . . 5
⊢
⦋((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅) ∈ V |
| 5 | 4 | csbex 5261 |
. . . 4
⊢
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅) ∈ V |
| 6 | | eqid 2729 |
. . . 4
⊢ (𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) = (𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) |
| 7 | 5, 6 | fnmpti 6643 |
. . 3
⊢ (𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat |
| 8 | | eqfnfv 6985 |
. . 3
⊢ ((InitO
Fn Cat ∧ (𝑐 ∈ Cat
↦ ⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat) → (InitO = (𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒))) |
| 9 | 1, 7, 8 | mp2an 692 |
. 2
⊢ (InitO =
(𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒)) |
| 10 | | eqid 2729 |
. . . . . 6
⊢
(SetCat‘1o) =
(SetCat‘1o) |
| 11 | | eqid 2729 |
. . . . . 6
⊢
((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅) = ((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅) |
| 12 | 10, 11 | isinito3 49462 |
. . . . 5
⊢ (𝑥 ∈ (InitO‘𝑒) ↔ 𝑥 ∈ dom (((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅)(𝑒 UP
(SetCat‘1o))∅)) |
| 13 | 12 | eqriv 2726 |
. . . 4
⊢
(InitO‘𝑒) =
dom (((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅)(𝑒 UP
(SetCat‘1o))∅) |
| 14 | | fvex 6853 |
. . . . 5
⊢
(SetCat‘1o) ∈ V |
| 15 | | fvexd 6855 |
. . . . . 6
⊢ (𝑑 = (SetCat‘1o)
→ ((1st ‘(𝑑Δfunc𝑒))‘∅) ∈ V) |
| 16 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑑 = (SetCat‘1o)
∧ 𝑓 = ((1st
‘(𝑑Δfunc𝑒))‘∅)) → 𝑑 =
(SetCat‘1o)) |
| 17 | 16 | oveq2d 7385 |
. . . . . . . 8
⊢ ((𝑑 = (SetCat‘1o)
∧ 𝑓 = ((1st
‘(𝑑Δfunc𝑒))‘∅)) → (𝑒 UP 𝑑) = (𝑒 UP
(SetCat‘1o))) |
| 18 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑑 = (SetCat‘1o)
∧ 𝑓 = ((1st
‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) |
| 19 | 16 | fvoveq1d 7391 |
. . . . . . . . . 10
⊢ ((𝑑 = (SetCat‘1o)
∧ 𝑓 = ((1st
‘(𝑑Δfunc𝑒))‘∅)) → (1st
‘(𝑑Δfunc𝑒)) = (1st
‘((SetCat‘1o)Δfunc𝑒))) |
| 20 | 19 | fveq1d 6842 |
. . . . . . . . 9
⊢ ((𝑑 = (SetCat‘1o)
∧ 𝑓 = ((1st
‘(𝑑Δfunc𝑒))‘∅)) → ((1st
‘(𝑑Δfunc𝑒))‘∅) = ((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅)) |
| 21 | 18, 20 | eqtrd 2764 |
. . . . . . . 8
⊢ ((𝑑 = (SetCat‘1o)
∧ 𝑓 = ((1st
‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅)) |
| 22 | | eqidd 2730 |
. . . . . . . 8
⊢ ((𝑑 = (SetCat‘1o)
∧ 𝑓 = ((1st
‘(𝑑Δfunc𝑒))‘∅)) → ∅ =
∅) |
| 23 | 17, 21, 22 | oveq123d 7390 |
. . . . . . 7
⊢ ((𝑑 = (SetCat‘1o)
∧ 𝑓 = ((1st
‘(𝑑Δfunc𝑒))‘∅)) → (𝑓(𝑒 UP 𝑑)∅) = (((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅)(𝑒 UP
(SetCat‘1o))∅)) |
| 24 | 23 | dmeqd 5859 |
. . . . . 6
⊢ ((𝑑 = (SetCat‘1o)
∧ 𝑓 = ((1st
‘(𝑑Δfunc𝑒))‘∅)) → dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅)(𝑒 UP
(SetCat‘1o))∅)) |
| 25 | 15, 24 | csbied 3895 |
. . . . 5
⊢ (𝑑 = (SetCat‘1o)
→ ⦋((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓⦌dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅)(𝑒 UP
(SetCat‘1o))∅)) |
| 26 | 14, 25 | csbie 3894 |
. . . 4
⊢
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑒))‘∅) / 𝑓⦌dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st
‘((SetCat‘1o)Δfunc𝑒))‘∅)(𝑒 UP
(SetCat‘1o))∅) |
| 27 | 13, 26 | eqtr4i 2755 |
. . 3
⊢
(InitO‘𝑒) =
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑒))‘∅) / 𝑓⦌dom (𝑓(𝑒 UP 𝑑)∅) |
| 28 | | oveq2 7377 |
. . . . . . . 8
⊢ (𝑐 = 𝑒 → (𝑑Δfunc𝑐) = (𝑑Δfunc𝑒)) |
| 29 | 28 | fveq2d 6844 |
. . . . . . 7
⊢ (𝑐 = 𝑒 → (1st ‘(𝑑Δfunc𝑐)) = (1st
‘(𝑑Δfunc𝑒))) |
| 30 | 29 | fveq1d 6842 |
. . . . . 6
⊢ (𝑐 = 𝑒 → ((1st ‘(𝑑Δfunc𝑐))‘∅) =
((1st ‘(𝑑Δfunc𝑒))‘∅)) |
| 31 | | oveq1 7376 |
. . . . . . . 8
⊢ (𝑐 = 𝑒 → (𝑐 UP 𝑑) = (𝑒 UP 𝑑)) |
| 32 | 31 | oveqd 7386 |
. . . . . . 7
⊢ (𝑐 = 𝑒 → (𝑓(𝑐 UP 𝑑)∅) = (𝑓(𝑒 UP 𝑑)∅)) |
| 33 | 32 | dmeqd 5859 |
. . . . . 6
⊢ (𝑐 = 𝑒 → dom (𝑓(𝑐 UP 𝑑)∅) = dom (𝑓(𝑒 UP 𝑑)∅)) |
| 34 | 30, 33 | csbeq12dv 3868 |
. . . . 5
⊢ (𝑐 = 𝑒 → ⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅) = ⦋((1st
‘(𝑑Δfunc𝑒))‘∅) / 𝑓⦌dom (𝑓(𝑒 UP 𝑑)∅)) |
| 35 | 34 | csbeq2dv 3866 |
. . . 4
⊢ (𝑐 = 𝑒 →
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅) =
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑒))‘∅) / 𝑓⦌dom (𝑓(𝑒 UP 𝑑)∅)) |
| 36 | | ovex 7402 |
. . . . . . 7
⊢ (𝑓(𝑒 UP 𝑑)∅) ∈ V |
| 37 | 36 | dmex 7865 |
. . . . . 6
⊢ dom
(𝑓(𝑒 UP 𝑑)∅) ∈ V |
| 38 | 37 | csbex 5261 |
. . . . 5
⊢
⦋((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓⦌dom (𝑓(𝑒 UP 𝑑)∅) ∈ V |
| 39 | 38 | csbex 5261 |
. . . 4
⊢
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑒))‘∅) / 𝑓⦌dom (𝑓(𝑒 UP 𝑑)∅) ∈ V |
| 40 | 35, 6, 39 | fvmpt 6950 |
. . 3
⊢ (𝑒 ∈ Cat → ((𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒) =
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑒))‘∅) / 𝑓⦌dom (𝑓(𝑒 UP 𝑑)∅)) |
| 41 | 27, 40 | eqtr4id 2783 |
. 2
⊢ (𝑒 ∈ Cat →
(InitO‘𝑒) = ((𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒)) |
| 42 | 9, 41 | mprgbir 3051 |
1
⊢ InitO =
(𝑐 ∈ Cat ↦
⦋(SetCat‘1o) / 𝑑⦌⦋((1st
‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) |