Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfinito4 Structured version   Visualization version   GIF version

Theorem dfinito4 49470
Description: An alternate definition of df-inito 17952 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17952. (Contributed by Zhi Wang, 23-Oct-2025.)
Assertion
Ref Expression
dfinito4 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
Distinct variable group:   𝑐,𝑑,𝑓

Proof of Theorem dfinito4
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initofn 17955 . . 3 InitO Fn Cat
2 ovex 7422 . . . . . . 7 (𝑓(𝑐 UP 𝑑)∅) ∈ V
32dmex 7887 . . . . . 6 dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
43csbex 5268 . . . . 5 ((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
54csbex 5268 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
6 eqid 2730 . . . 4 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
75, 6fnmpti 6663 . . 3 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat
8 eqfnfv 7005 . . 3 ((InitO Fn Cat ∧ (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat) → (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒)))
91, 7, 8mp2an 692 . 2 (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒))
10 eqid 2730 . . . . . 6 (SetCat‘1o) = (SetCat‘1o)
11 eqid 2730 . . . . . 6 ((1st ‘((SetCat‘1ofunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅)
1210, 11isinito3 49469 . . . . 5 (𝑥 ∈ (InitO‘𝑒) ↔ 𝑥 ∈ dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
1312eqriv 2727 . . . 4 (InitO‘𝑒) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅)
14 fvex 6873 . . . . 5 (SetCat‘1o) ∈ V
15 fvexd 6875 . . . . . 6 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) ∈ V)
16 simpl 482 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑑 = (SetCat‘1o))
1716oveq2d 7405 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑒 UP 𝑑) = (𝑒 UP (SetCat‘1o)))
18 simpr 484 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅))
1916fvoveq1d 7411 . . . . . . . . . 10 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (1st ‘(𝑑Δfunc𝑒)) = (1st ‘((SetCat‘1ofunc𝑒)))
2019fveq1d 6862 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ((1st ‘(𝑑Δfunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
2118, 20eqtrd 2765 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
22 eqidd 2731 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ∅ = ∅)
2317, 21, 22oveq123d 7410 . . . . . . 7 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑓(𝑒 UP 𝑑)∅) = (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2423dmeqd 5871 . . . . . 6 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2515, 24csbied 3900 . . . . 5 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2614, 25csbie 3899 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅)
2713, 26eqtr4i 2756 . . 3 (InitO‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅)
28 oveq2 7397 . . . . . . . 8 (𝑐 = 𝑒 → (𝑑Δfunc𝑐) = (𝑑Δfunc𝑒))
2928fveq2d 6864 . . . . . . 7 (𝑐 = 𝑒 → (1st ‘(𝑑Δfunc𝑐)) = (1st ‘(𝑑Δfunc𝑒)))
3029fveq1d 6862 . . . . . 6 (𝑐 = 𝑒 → ((1st ‘(𝑑Δfunc𝑐))‘∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅))
31 oveq1 7396 . . . . . . . 8 (𝑐 = 𝑒 → (𝑐 UP 𝑑) = (𝑒 UP 𝑑))
3231oveqd 7406 . . . . . . 7 (𝑐 = 𝑒 → (𝑓(𝑐 UP 𝑑)∅) = (𝑓(𝑒 UP 𝑑)∅))
3332dmeqd 5871 . . . . . 6 (𝑐 = 𝑒 → dom (𝑓(𝑐 UP 𝑑)∅) = dom (𝑓(𝑒 UP 𝑑)∅))
3430, 33csbeq12dv 3873 . . . . 5 (𝑐 = 𝑒((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
3534csbeq2dv 3871 . . . 4 (𝑐 = 𝑒(SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
36 ovex 7422 . . . . . . 7 (𝑓(𝑒 UP 𝑑)∅) ∈ V
3736dmex 7887 . . . . . 6 dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
3837csbex 5268 . . . . 5 ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
3938csbex 5268 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
4035, 6, 39fvmpt 6970 . . 3 (𝑒 ∈ Cat → ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
4127, 40eqtr4id 2784 . 2 (𝑒 ∈ Cat → (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒))
429, 41mprgbir 3052 1 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  csb 3864  c0 4298  cmpt 5190  dom cdm 5640   Fn wfn 6508  cfv 6513  (class class class)co 7389  1st c1st 7968  1oc1o 8429  Catccat 17631  InitOcinito 17949  SetCatcsetc 18043  Δfunccdiag 18179   UP cup 49146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-func 17826  df-nat 17914  df-fuc 17915  df-inito 17952  df-setc 18044  df-xpc 18139  df-1stf 18140  df-curf 18181  df-diag 18183  df-up 49147  df-thinc 49387  df-termc 49442
This theorem is referenced by:  dftermo4  49471
  Copyright terms: Public domain W3C validator