Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfinito4 Structured version   Visualization version   GIF version

Theorem dfinito4 49533
Description: An alternate definition of df-inito 17886 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17886. (Contributed by Zhi Wang, 23-Oct-2025.)
Assertion
Ref Expression
dfinito4 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
Distinct variable group:   𝑐,𝑑,𝑓

Proof of Theorem dfinito4
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initofn 17889 . . 3 InitO Fn Cat
2 ovex 7374 . . . . . . 7 (𝑓(𝑐 UP 𝑑)∅) ∈ V
32dmex 7834 . . . . . 6 dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
43csbex 5244 . . . . 5 ((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
54csbex 5244 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) ∈ V
6 eqid 2731 . . . 4 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
75, 6fnmpti 6619 . . 3 (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat
8 eqfnfv 6959 . . 3 ((InitO Fn Cat ∧ (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) Fn Cat) → (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒)))
91, 7, 8mp2an 692 . 2 (InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅)) ↔ ∀𝑒 ∈ Cat (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒))
10 eqid 2731 . . . . . 6 (SetCat‘1o) = (SetCat‘1o)
11 eqid 2731 . . . . . 6 ((1st ‘((SetCat‘1ofunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅)
1210, 11isinito3 49532 . . . . 5 (𝑥 ∈ (InitO‘𝑒) ↔ 𝑥 ∈ dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
1312eqriv 2728 . . . 4 (InitO‘𝑒) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅)
14 fvex 6830 . . . . 5 (SetCat‘1o) ∈ V
15 fvexd 6832 . . . . . 6 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) ∈ V)
16 simpl 482 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑑 = (SetCat‘1o))
1716oveq2d 7357 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑒 UP 𝑑) = (𝑒 UP (SetCat‘1o)))
18 simpr 484 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅))
1916fvoveq1d 7363 . . . . . . . . . 10 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (1st ‘(𝑑Δfunc𝑒)) = (1st ‘((SetCat‘1ofunc𝑒)))
2019fveq1d 6819 . . . . . . . . 9 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ((1st ‘(𝑑Δfunc𝑒))‘∅) = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
2118, 20eqtrd 2766 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → 𝑓 = ((1st ‘((SetCat‘1ofunc𝑒))‘∅))
22 eqidd 2732 . . . . . . . 8 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → ∅ = ∅)
2317, 21, 22oveq123d 7362 . . . . . . 7 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → (𝑓(𝑒 UP 𝑑)∅) = (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2423dmeqd 5840 . . . . . 6 ((𝑑 = (SetCat‘1o) ∧ 𝑓 = ((1st ‘(𝑑Δfunc𝑒))‘∅)) → dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2515, 24csbied 3881 . . . . 5 (𝑑 = (SetCat‘1o) → ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅))
2614, 25csbie 3880 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) = dom (((1st ‘((SetCat‘1ofunc𝑒))‘∅)(𝑒 UP (SetCat‘1o))∅)
2713, 26eqtr4i 2757 . . 3 (InitO‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅)
28 oveq2 7349 . . . . . . . 8 (𝑐 = 𝑒 → (𝑑Δfunc𝑐) = (𝑑Δfunc𝑒))
2928fveq2d 6821 . . . . . . 7 (𝑐 = 𝑒 → (1st ‘(𝑑Δfunc𝑐)) = (1st ‘(𝑑Δfunc𝑒)))
3029fveq1d 6819 . . . . . 6 (𝑐 = 𝑒 → ((1st ‘(𝑑Δfunc𝑐))‘∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅))
31 oveq1 7348 . . . . . . . 8 (𝑐 = 𝑒 → (𝑐 UP 𝑑) = (𝑒 UP 𝑑))
3231oveqd 7358 . . . . . . 7 (𝑐 = 𝑒 → (𝑓(𝑐 UP 𝑑)∅) = (𝑓(𝑒 UP 𝑑)∅))
3332dmeqd 5840 . . . . . 6 (𝑐 = 𝑒 → dom (𝑓(𝑐 UP 𝑑)∅) = dom (𝑓(𝑒 UP 𝑑)∅))
3430, 33csbeq12dv 3854 . . . . 5 (𝑐 = 𝑒((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) = ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
3534csbeq2dv 3852 . . . 4 (𝑐 = 𝑒(SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
36 ovex 7374 . . . . . . 7 (𝑓(𝑒 UP 𝑑)∅) ∈ V
3736dmex 7834 . . . . . 6 dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
3837csbex 5244 . . . . 5 ((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
3938csbex 5244 . . . 4 (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅) ∈ V
4035, 6, 39fvmpt 6924 . . 3 (𝑒 ∈ Cat → ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒) = (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑒))‘∅) / 𝑓dom (𝑓(𝑒 UP 𝑑)∅))
4127, 40eqtr4id 2785 . 2 (𝑒 ∈ Cat → (InitO‘𝑒) = ((𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))‘𝑒))
429, 41mprgbir 3054 1 InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  csb 3845  c0 4278  cmpt 5167  dom cdm 5611   Fn wfn 6471  cfv 6476  (class class class)co 7341  1st c1st 7914  1oc1o 8373  Catccat 17565  InitOcinito 17883  SetCatcsetc 17977  Δfunccdiag 18113   UP cup 49205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-ot 4580  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-cat 17569  df-cid 17570  df-func 17760  df-nat 17848  df-fuc 17849  df-inito 17886  df-setc 17978  df-xpc 18073  df-1stf 18074  df-curf 18115  df-diag 18117  df-up 49206  df-thinc 49450  df-termc 49505
This theorem is referenced by:  dftermo4  49534
  Copyright terms: Public domain W3C validator