| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istermc | Structured version Visualization version GIF version | ||
| Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| istermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| istermc | ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6840 | . . . 4 ⊢ (𝑐 = 𝐶 → ((Base‘𝑐) = {𝑥} ↔ (Base‘𝐶) = {𝑥})) | |
| 2 | 1 | exbidv 1922 | . . 3 ⊢ (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥})) |
| 3 | istermc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 3 | eqeq1i 2738 | . . . 4 ⊢ (𝐵 = {𝑥} ↔ (Base‘𝐶) = {𝑥}) |
| 5 | 4 | exbii 1849 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥}) |
| 6 | 2, 5 | bitr4di 289 | . 2 ⊢ (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 7 | df-termc 49634 | . 2 ⊢ TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}} | |
| 8 | 6, 7 | elrab2 3646 | 1 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {csn 4577 ‘cfv 6489 Basecbs 17127 ThinCatcthinc 49578 TermCatctermc 49633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-termc 49634 |
| This theorem is referenced by: istermc2 49636 istermc3 49637 termcthin 49638 termcbas 49641 termcpropd 49664 idfudiag1 49686 funcsn 49702 0fucterm 49704 discsnterm 49735 |
| Copyright terms: Public domain | W3C validator |