Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istermc Structured version   Visualization version   GIF version

Theorem istermc 49635
Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypothesis
Ref Expression
istermc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
istermc (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem istermc
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6840 . . . 4 (𝑐 = 𝐶 → ((Base‘𝑐) = {𝑥} ↔ (Base‘𝐶) = {𝑥}))
21exbidv 1922 . . 3 (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥}))
3 istermc.b . . . . 5 𝐵 = (Base‘𝐶)
43eqeq1i 2738 . . . 4 (𝐵 = {𝑥} ↔ (Base‘𝐶) = {𝑥})
54exbii 1849 . . 3 (∃𝑥 𝐵 = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥})
62, 5bitr4di 289 . 2 (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥}))
7 df-termc 49634 . 2 TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}}
86, 7elrab2 3646 1 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  {csn 4577  cfv 6489  Basecbs 17127  ThinCatcthinc 49578  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-termc 49634
This theorem is referenced by:  istermc2  49636  istermc3  49637  termcthin  49638  termcbas  49641  termcpropd  49664  idfudiag1  49686  funcsn  49702  0fucterm  49704  discsnterm  49735
  Copyright terms: Public domain W3C validator