Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istermc Structured version   Visualization version   GIF version

Theorem istermc 49443
Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypothesis
Ref Expression
istermc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
istermc (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem istermc
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6869 . . . 4 (𝑐 = 𝐶 → ((Base‘𝑐) = {𝑥} ↔ (Base‘𝐶) = {𝑥}))
21exbidv 1921 . . 3 (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥}))
3 istermc.b . . . . 5 𝐵 = (Base‘𝐶)
43eqeq1i 2735 . . . 4 (𝐵 = {𝑥} ↔ (Base‘𝐶) = {𝑥})
54exbii 1848 . . 3 (∃𝑥 𝐵 = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥})
62, 5bitr4di 289 . 2 (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥}))
7 df-termc 49442 . 2 TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}}
86, 7elrab2 3664 1 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {csn 4591  cfv 6513  Basecbs 17185  ThinCatcthinc 49386  TermCatctermc 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-termc 49442
This theorem is referenced by:  istermc2  49444  istermc3  49445  termcthin  49446  termcbas  49449  termcpropd  49472  idfudiag1  49494  funcsn  49510  0fucterm  49512  discsnterm  49543
  Copyright terms: Public domain W3C validator