Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istermc Structured version   Visualization version   GIF version

Theorem istermc 49173
Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypothesis
Ref Expression
istermc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
istermc (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem istermc
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6895 . . . 4 (𝑐 = 𝐶 → ((Base‘𝑐) = {𝑥} ↔ (Base‘𝐶) = {𝑥}))
21exbidv 1920 . . 3 (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥}))
3 istermc.b . . . . 5 𝐵 = (Base‘𝐶)
43eqeq1i 2739 . . . 4 (𝐵 = {𝑥} ↔ (Base‘𝐶) = {𝑥})
54exbii 1847 . . 3 (∃𝑥 𝐵 = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥})
62, 5bitr4di 289 . 2 (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥}))
7 df-termc 49172 . 2 TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}}
86, 7elrab2 3678 1 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  {csn 4606  cfv 6541  Basecbs 17230  ThinCatcthinc 49118  TermCatctermc 49171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-termc 49172
This theorem is referenced by:  istermc2  49174  istermc3  49175  termcthin  49176  termcbas  49179  termcpropd  49201  idfudiag1  49223  discsnterm  49266
  Copyright terms: Public domain W3C validator