Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istermc Structured version   Visualization version   GIF version

Theorem istermc 49436
Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypothesis
Ref Expression
istermc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
istermc (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem istermc
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6849 . . . 4 (𝑐 = 𝐶 → ((Base‘𝑐) = {𝑥} ↔ (Base‘𝐶) = {𝑥}))
21exbidv 1921 . . 3 (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥}))
3 istermc.b . . . . 5 𝐵 = (Base‘𝐶)
43eqeq1i 2734 . . . 4 (𝐵 = {𝑥} ↔ (Base‘𝐶) = {𝑥})
54exbii 1848 . . 3 (∃𝑥 𝐵 = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥})
62, 5bitr4di 289 . 2 (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥}))
7 df-termc 49435 . 2 TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}}
86, 7elrab2 3659 1 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {csn 4585  cfv 6499  Basecbs 17155  ThinCatcthinc 49379  TermCatctermc 49434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-termc 49435
This theorem is referenced by:  istermc2  49437  istermc3  49438  termcthin  49439  termcbas  49442  termcpropd  49465  idfudiag1  49487  funcsn  49503  0fucterm  49505  discsnterm  49536
  Copyright terms: Public domain W3C validator