| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istermc | Structured version Visualization version GIF version | ||
| Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| istermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| istermc | ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6835 | . . . 4 ⊢ (𝑐 = 𝐶 → ((Base‘𝑐) = {𝑥} ↔ (Base‘𝐶) = {𝑥})) | |
| 2 | 1 | exbidv 1921 | . . 3 ⊢ (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥})) |
| 3 | istermc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 3 | eqeq1i 2734 | . . . 4 ⊢ (𝐵 = {𝑥} ↔ (Base‘𝐶) = {𝑥}) |
| 5 | 4 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥}) |
| 6 | 2, 5 | bitr4di 289 | . 2 ⊢ (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 7 | df-termc 49478 | . 2 ⊢ TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}} | |
| 8 | 6, 7 | elrab2 3653 | 1 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {csn 4579 ‘cfv 6486 Basecbs 17139 ThinCatcthinc 49422 TermCatctermc 49477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-termc 49478 |
| This theorem is referenced by: istermc2 49480 istermc3 49481 termcthin 49482 termcbas 49485 termcpropd 49508 idfudiag1 49530 funcsn 49546 0fucterm 49548 discsnterm 49579 |
| Copyright terms: Public domain | W3C validator |