| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istermc | Structured version Visualization version GIF version | ||
| Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| istermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| istermc | ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6895 | . . . 4 ⊢ (𝑐 = 𝐶 → ((Base‘𝑐) = {𝑥} ↔ (Base‘𝐶) = {𝑥})) | |
| 2 | 1 | exbidv 1920 | . . 3 ⊢ (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥})) |
| 3 | istermc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 3 | eqeq1i 2739 | . . . 4 ⊢ (𝐵 = {𝑥} ↔ (Base‘𝐶) = {𝑥}) |
| 5 | 4 | exbii 1847 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥}) |
| 6 | 2, 5 | bitr4di 289 | . 2 ⊢ (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 7 | df-termc 49172 | . 2 ⊢ TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}} | |
| 8 | 6, 7 | elrab2 3678 | 1 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {csn 4606 ‘cfv 6541 Basecbs 17230 ThinCatcthinc 49118 TermCatctermc 49171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-termc 49172 |
| This theorem is referenced by: istermc2 49174 istermc3 49175 termcthin 49176 termcbas 49179 termcpropd 49201 idfudiag1 49223 discsnterm 49266 |
| Copyright terms: Public domain | W3C validator |