| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istermc | Structured version Visualization version GIF version | ||
| Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| istermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| istermc | ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6869 | . . . 4 ⊢ (𝑐 = 𝐶 → ((Base‘𝑐) = {𝑥} ↔ (Base‘𝐶) = {𝑥})) | |
| 2 | 1 | exbidv 1921 | . . 3 ⊢ (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥})) |
| 3 | istermc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 3 | eqeq1i 2735 | . . . 4 ⊢ (𝐵 = {𝑥} ↔ (Base‘𝐶) = {𝑥}) |
| 5 | 4 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} ↔ ∃𝑥(Base‘𝐶) = {𝑥}) |
| 6 | 2, 5 | bitr4di 289 | . 2 ⊢ (𝑐 = 𝐶 → (∃𝑥(Base‘𝑐) = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 7 | df-termc 49442 | . 2 ⊢ TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}} | |
| 8 | 6, 7 | elrab2 3664 | 1 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {csn 4591 ‘cfv 6513 Basecbs 17185 ThinCatcthinc 49386 TermCatctermc 49441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-termc 49442 |
| This theorem is referenced by: istermc2 49444 istermc3 49445 termcthin 49446 termcbas 49449 termcpropd 49472 idfudiag1 49494 funcsn 49510 0fucterm 49512 discsnterm 49543 |
| Copyright terms: Public domain | W3C validator |