| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termoeu2 | Structured version Visualization version GIF version | ||
| Description: Terminal objects are essentially unique; if 𝐴 is a terminal object, then so is every object that is isomorphic to 𝐴. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| termoeu2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| termoeu2.a | ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) |
| termoeu2.i | ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| Ref | Expression |
|---|---|
| termoeu2 | ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termoeu2.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | eqid 2734 | . . . . 5 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
| 3 | 2 | oppccat 17737 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
| 5 | termoeu2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) | |
| 6 | oppctermo 48987 | . . . 4 ⊢ (𝐴 ∈ (TermO‘𝐶) ↔ 𝐴 ∈ (InitO‘(oppCat‘𝐶))) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (InitO‘(oppCat‘𝐶))) |
| 8 | termoeu2.i | . . . 4 ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) | |
| 9 | 2, 8 | oppccic 48918 | . . 3 ⊢ (𝜑 → 𝐴( ≃𝑐 ‘(oppCat‘𝐶))𝐵) |
| 10 | 4, 7, 9 | initoeu2 18033 | . 2 ⊢ (𝜑 → 𝐵 ∈ (InitO‘(oppCat‘𝐶))) |
| 11 | oppctermo 48987 | . 2 ⊢ (𝐵 ∈ (TermO‘𝐶) ↔ 𝐵 ∈ (InitO‘(oppCat‘𝐶))) | |
| 12 | 10, 11 | sylibr 234 | 1 ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Catccat 17679 oppCatcoppc 17726 ≃𝑐 ccic 17811 InitOcinito 17998 TermOctermo 17999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17298 df-cco 17299 df-cat 17683 df-cid 17684 df-homf 17685 df-comf 17686 df-oppc 17727 df-sect 17763 df-inv 17764 df-iso 17765 df-cic 17812 df-inito 18001 df-termo 18002 |
| This theorem is referenced by: termcciso 49214 |
| Copyright terms: Public domain | W3C validator |