Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0thincg Structured version   Visualization version   GIF version

Theorem 0thincg 48389
Description: Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.)
Assertion
Ref Expression
0thincg ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)

Proof of Theorem 0thincg
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0catg 17703 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)
2 ral0 4517 . . . 4 𝑥 ∈ ∅ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)
3 raleq 3312 . . . 4 (∅ = (Base‘𝐶) → (∀𝑥 ∈ ∅ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
42, 3mpbii 232 . . 3 (∅ = (Base‘𝐶) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
54adantl 480 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
6 eqid 2726 . . 3 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2726 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
86, 7isthinc 48360 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
91, 5, 8sylanbrc 581 1 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  ∃*wmo 2527  wral 3051  c0 4325  cfv 6556  (class class class)co 7426  Basecbs 17215  Hom chom 17279  Catccat 17679  ThinCatcthinc 48358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-nul 5313
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-iota 6508  df-fv 6564  df-ov 7429  df-cat 17683  df-thinc 48359
This theorem is referenced by:  0thinc  48390
  Copyright terms: Public domain W3C validator