Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0thincg Structured version   Visualization version   GIF version

Theorem 0thincg 46331
Description: Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.)
Assertion
Ref Expression
0thincg ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)

Proof of Theorem 0thincg
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0catg 17397 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)
2 ral0 4443 . . . 4 𝑥 ∈ ∅ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)
3 raleq 3342 . . . 4 (∅ = (Base‘𝐶) → (∀𝑥 ∈ ∅ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
42, 3mpbii 232 . . 3 (∅ = (Base‘𝐶) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
54adantl 482 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
6 eqid 2738 . . 3 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2738 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
86, 7isthinc 46302 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
91, 5, 8sylanbrc 583 1 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ∃*wmo 2538  wral 3064  c0 4256  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  Catccat 17373  ThinCatcthinc 46300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-cat 17377  df-thinc 46301
This theorem is referenced by:  0thinc  46332
  Copyright terms: Public domain W3C validator