Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0thincg Structured version   Visualization version   GIF version

Theorem 0thincg 49447
Description: Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.)
Assertion
Ref Expression
0thincg ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)

Proof of Theorem 0thincg
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0catg 17649 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)
2 ral0 4476 . . . 4 𝑥 ∈ ∅ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)
3 raleq 3296 . . . 4 (∅ = (Base‘𝐶) → (∀𝑥 ∈ ∅ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
42, 3mpbii 233 . . 3 (∅ = (Base‘𝐶) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
54adantl 481 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
6 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2729 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
86, 7isthinc 49408 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
91, 5, 8sylanbrc 583 1 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2531  wral 3044  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  Catccat 17625  ThinCatcthinc 49406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-cat 17629  df-thinc 49407
This theorem is referenced by:  0thinc  49448
  Copyright terms: Public domain W3C validator