Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0thincg Structured version   Visualization version   GIF version

Theorem 0thincg 47757
Description: Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.)
Assertion
Ref Expression
0thincg ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)

Proof of Theorem 0thincg
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0catg 17636 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)
2 ral0 4511 . . . 4 𝑥 ∈ ∅ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)
3 raleq 3320 . . . 4 (∅ = (Base‘𝐶) → (∀𝑥 ∈ ∅ ∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
42, 3mpbii 232 . . 3 (∅ = (Base‘𝐶) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
54adantl 480 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
6 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2730 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
86, 7isthinc 47728 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
91, 5, 8sylanbrc 581 1 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  ∃*wmo 2530  wral 3059  c0 4321  cfv 6542  (class class class)co 7411  Basecbs 17148  Hom chom 17212  Catccat 17612  ThinCatcthinc 47726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-mo 2532  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414  df-cat 17616  df-thinc 47727
This theorem is referenced by:  0thinc  47758
  Copyright terms: Public domain W3C validator