Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  initc Structured version   Visualization version   GIF version

Theorem initc 49122
Description: Sets with empty base are the only initial objects in the category of small categories. Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 15-Nov-2025.)
Assertion
Ref Expression
initc ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
Distinct variable group:   𝐶,𝑑,𝑓

Proof of Theorem initc
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → 𝐶 ∈ V)
2 simplr 768 . . . . . 6 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → ∅ = (Base‘𝐶))
3 simpr 484 . . . . . 6 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → 𝑑 ∈ Cat)
41, 2, 30funcg 49116 . . . . 5 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → (𝐶 Func 𝑑) = {⟨∅, ∅⟩})
5 opex 5404 . . . . . 6 ⟨∅, ∅⟩ ∈ V
6 sneq 4586 . . . . . . 7 (𝑓 = ⟨∅, ∅⟩ → {𝑓} = {⟨∅, ∅⟩})
76eqeq2d 2742 . . . . . 6 (𝑓 = ⟨∅, ∅⟩ → ((𝐶 Func 𝑑) = {𝑓} ↔ (𝐶 Func 𝑑) = {⟨∅, ∅⟩}))
85, 7spcev 3561 . . . . 5 ((𝐶 Func 𝑑) = {⟨∅, ∅⟩} → ∃𝑓(𝐶 Func 𝑑) = {𝑓})
94, 8syl 17 . . . 4 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → ∃𝑓(𝐶 Func 𝑑) = {𝑓})
10 eusn 4683 . . . 4 (∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) ↔ ∃𝑓(𝐶 Func 𝑑) = {𝑓})
119, 10sylibr 234 . . 3 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
1211ralrimiva 3124 . 2 ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) → ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
13 0cat 17592 . . . 4 ∅ ∈ Cat
14 oveq2 7354 . . . . . . 7 (𝑑 = ∅ → (𝐶 Func 𝑑) = (𝐶 Func ∅))
1514eleq2d 2817 . . . . . 6 (𝑑 = ∅ → (𝑓 ∈ (𝐶 Func 𝑑) ↔ 𝑓 ∈ (𝐶 Func ∅)))
1615eubidv 2581 . . . . 5 (𝑑 = ∅ → (∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) ↔ ∃!𝑓 𝑓 ∈ (𝐶 Func ∅)))
1716rspcv 3573 . . . 4 (∅ ∈ Cat → (∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) → ∃!𝑓 𝑓 ∈ (𝐶 Func ∅)))
1813, 17ax-mp 5 . . 3 (∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) → ∃!𝑓 𝑓 ∈ (𝐶 Func ∅))
19 euex 2572 . . 3 (∃!𝑓 𝑓 ∈ (𝐶 Func ∅) → ∃𝑓 𝑓 ∈ (𝐶 Func ∅))
20 funcrcl 17767 . . . . . . 7 (𝑓 ∈ (𝐶 Func ∅) → (𝐶 ∈ Cat ∧ ∅ ∈ Cat))
2120simpld 494 . . . . . 6 (𝑓 ∈ (𝐶 Func ∅) → 𝐶 ∈ Cat)
2221elexd 3460 . . . . 5 (𝑓 ∈ (𝐶 Func ∅) → 𝐶 ∈ V)
23 eqid 2731 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
24 base0 17122 . . . . . . 7 ∅ = (Base‘∅)
25 eqidd 2732 . . . . . . 7 (𝑓 ∈ (𝐶 Func ∅) → ∅ = ∅)
26 id 22 . . . . . . 7 (𝑓 ∈ (𝐶 Func ∅) → 𝑓 ∈ (𝐶 Func ∅))
2723, 24, 25, 26func0g2 49121 . . . . . 6 (𝑓 ∈ (𝐶 Func ∅) → (Base‘𝐶) = ∅)
2827eqcomd 2737 . . . . 5 (𝑓 ∈ (𝐶 Func ∅) → ∅ = (Base‘𝐶))
2922, 28jca 511 . . . 4 (𝑓 ∈ (𝐶 Func ∅) → (𝐶 ∈ V ∧ ∅ = (Base‘𝐶)))
3029exlimiv 1931 . . 3 (∃𝑓 𝑓 ∈ (𝐶 Func ∅) → (𝐶 ∈ V ∧ ∅ = (Base‘𝐶)))
3118, 19, 303syl 18 . 2 (∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) → (𝐶 ∈ V ∧ ∅ = (Base‘𝐶)))
3212, 31impbii 209 1 ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  wral 3047  Vcvv 3436  c0 4283  {csn 4576  cop 4582  cfv 6481  (class class class)co 7346  Basecbs 17117  Catccat 17567   Func cfunc 17758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-1cn 11061  ax-addcl 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-map 8752  df-ixp 8822  df-nn 12123  df-slot 17090  df-ndx 17102  df-base 17118  df-cat 17571  df-func 17762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator