Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  initc Structured version   Visualization version   GIF version

Theorem initc 49216
Description: Sets with empty base are the only initial objects in the category of small categories. Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 15-Nov-2025.)
Assertion
Ref Expression
initc ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
Distinct variable group:   𝐶,𝑑,𝑓

Proof of Theorem initc
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → 𝐶 ∈ V)
2 simplr 768 . . . . . 6 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → ∅ = (Base‘𝐶))
3 simpr 484 . . . . . 6 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → 𝑑 ∈ Cat)
41, 2, 30funcg 49210 . . . . 5 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → (𝐶 Func 𝑑) = {⟨∅, ∅⟩})
5 opex 5407 . . . . . 6 ⟨∅, ∅⟩ ∈ V
6 sneq 4585 . . . . . . 7 (𝑓 = ⟨∅, ∅⟩ → {𝑓} = {⟨∅, ∅⟩})
76eqeq2d 2744 . . . . . 6 (𝑓 = ⟨∅, ∅⟩ → ((𝐶 Func 𝑑) = {𝑓} ↔ (𝐶 Func 𝑑) = {⟨∅, ∅⟩}))
85, 7spcev 3557 . . . . 5 ((𝐶 Func 𝑑) = {⟨∅, ∅⟩} → ∃𝑓(𝐶 Func 𝑑) = {𝑓})
94, 8syl 17 . . . 4 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → ∃𝑓(𝐶 Func 𝑑) = {𝑓})
10 eusn 4682 . . . 4 (∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) ↔ ∃𝑓(𝐶 Func 𝑑) = {𝑓})
119, 10sylibr 234 . . 3 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
1211ralrimiva 3125 . 2 ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) → ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
13 0cat 17597 . . . 4 ∅ ∈ Cat
14 oveq2 7360 . . . . . . 7 (𝑑 = ∅ → (𝐶 Func 𝑑) = (𝐶 Func ∅))
1514eleq2d 2819 . . . . . 6 (𝑑 = ∅ → (𝑓 ∈ (𝐶 Func 𝑑) ↔ 𝑓 ∈ (𝐶 Func ∅)))
1615eubidv 2583 . . . . 5 (𝑑 = ∅ → (∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) ↔ ∃!𝑓 𝑓 ∈ (𝐶 Func ∅)))
1716rspcv 3569 . . . 4 (∅ ∈ Cat → (∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) → ∃!𝑓 𝑓 ∈ (𝐶 Func ∅)))
1813, 17ax-mp 5 . . 3 (∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) → ∃!𝑓 𝑓 ∈ (𝐶 Func ∅))
19 euex 2574 . . 3 (∃!𝑓 𝑓 ∈ (𝐶 Func ∅) → ∃𝑓 𝑓 ∈ (𝐶 Func ∅))
20 funcrcl 17772 . . . . . . 7 (𝑓 ∈ (𝐶 Func ∅) → (𝐶 ∈ Cat ∧ ∅ ∈ Cat))
2120simpld 494 . . . . . 6 (𝑓 ∈ (𝐶 Func ∅) → 𝐶 ∈ Cat)
2221elexd 3461 . . . . 5 (𝑓 ∈ (𝐶 Func ∅) → 𝐶 ∈ V)
23 eqid 2733 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
24 base0 17127 . . . . . . 7 ∅ = (Base‘∅)
25 eqidd 2734 . . . . . . 7 (𝑓 ∈ (𝐶 Func ∅) → ∅ = ∅)
26 id 22 . . . . . . 7 (𝑓 ∈ (𝐶 Func ∅) → 𝑓 ∈ (𝐶 Func ∅))
2723, 24, 25, 26func0g2 49215 . . . . . 6 (𝑓 ∈ (𝐶 Func ∅) → (Base‘𝐶) = ∅)
2827eqcomd 2739 . . . . 5 (𝑓 ∈ (𝐶 Func ∅) → ∅ = (Base‘𝐶))
2922, 28jca 511 . . . 4 (𝑓 ∈ (𝐶 Func ∅) → (𝐶 ∈ V ∧ ∅ = (Base‘𝐶)))
3029exlimiv 1931 . . 3 (∃𝑓 𝑓 ∈ (𝐶 Func ∅) → (𝐶 ∈ V ∧ ∅ = (Base‘𝐶)))
3118, 19, 303syl 18 . 2 (∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) → (𝐶 ∈ V ∧ ∅ = (Base‘𝐶)))
3212, 31impbii 209 1 ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  ∃!weu 2565  wral 3048  Vcvv 3437  c0 4282  {csn 4575  cop 4581  cfv 6486  (class class class)co 7352  Basecbs 17122  Catccat 17572   Func cfunc 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-map 8758  df-ixp 8828  df-nn 12133  df-slot 17095  df-ndx 17107  df-base 17123  df-cat 17576  df-func 17767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator