Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  initc Structured version   Visualization version   GIF version

Theorem initc 49077
Description: Sets with empty base are the only initial objects in the category of small categories. Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 15-Nov-2025.)
Assertion
Ref Expression
initc ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
Distinct variable group:   𝐶,𝑑,𝑓

Proof of Theorem initc
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → 𝐶 ∈ V)
2 simplr 768 . . . . . 6 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → ∅ = (Base‘𝐶))
3 simpr 484 . . . . . 6 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → 𝑑 ∈ Cat)
41, 2, 30funcg 49071 . . . . 5 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → (𝐶 Func 𝑑) = {⟨∅, ∅⟩})
5 opex 5411 . . . . . 6 ⟨∅, ∅⟩ ∈ V
6 sneq 4589 . . . . . . 7 (𝑓 = ⟨∅, ∅⟩ → {𝑓} = {⟨∅, ∅⟩})
76eqeq2d 2740 . . . . . 6 (𝑓 = ⟨∅, ∅⟩ → ((𝐶 Func 𝑑) = {𝑓} ↔ (𝐶 Func 𝑑) = {⟨∅, ∅⟩}))
85, 7spcev 3563 . . . . 5 ((𝐶 Func 𝑑) = {⟨∅, ∅⟩} → ∃𝑓(𝐶 Func 𝑑) = {𝑓})
94, 8syl 17 . . . 4 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → ∃𝑓(𝐶 Func 𝑑) = {𝑓})
10 eusn 4684 . . . 4 (∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) ↔ ∃𝑓(𝐶 Func 𝑑) = {𝑓})
119, 10sylibr 234 . . 3 (((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ∧ 𝑑 ∈ Cat) → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
1211ralrimiva 3121 . 2 ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) → ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
13 0cat 17613 . . . 4 ∅ ∈ Cat
14 oveq2 7361 . . . . . . 7 (𝑑 = ∅ → (𝐶 Func 𝑑) = (𝐶 Func ∅))
1514eleq2d 2814 . . . . . 6 (𝑑 = ∅ → (𝑓 ∈ (𝐶 Func 𝑑) ↔ 𝑓 ∈ (𝐶 Func ∅)))
1615eubidv 2579 . . . . 5 (𝑑 = ∅ → (∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) ↔ ∃!𝑓 𝑓 ∈ (𝐶 Func ∅)))
1716rspcv 3575 . . . 4 (∅ ∈ Cat → (∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) → ∃!𝑓 𝑓 ∈ (𝐶 Func ∅)))
1813, 17ax-mp 5 . . 3 (∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) → ∃!𝑓 𝑓 ∈ (𝐶 Func ∅))
19 euex 2570 . . 3 (∃!𝑓 𝑓 ∈ (𝐶 Func ∅) → ∃𝑓 𝑓 ∈ (𝐶 Func ∅))
20 funcrcl 17788 . . . . . . 7 (𝑓 ∈ (𝐶 Func ∅) → (𝐶 ∈ Cat ∧ ∅ ∈ Cat))
2120simpld 494 . . . . . 6 (𝑓 ∈ (𝐶 Func ∅) → 𝐶 ∈ Cat)
2221elexd 3462 . . . . 5 (𝑓 ∈ (𝐶 Func ∅) → 𝐶 ∈ V)
23 eqid 2729 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
24 base0 17143 . . . . . . 7 ∅ = (Base‘∅)
25 eqidd 2730 . . . . . . 7 (𝑓 ∈ (𝐶 Func ∅) → ∅ = ∅)
26 id 22 . . . . . . 7 (𝑓 ∈ (𝐶 Func ∅) → 𝑓 ∈ (𝐶 Func ∅))
2723, 24, 25, 26func0g2 49076 . . . . . 6 (𝑓 ∈ (𝐶 Func ∅) → (Base‘𝐶) = ∅)
2827eqcomd 2735 . . . . 5 (𝑓 ∈ (𝐶 Func ∅) → ∅ = (Base‘𝐶))
2922, 28jca 511 . . . 4 (𝑓 ∈ (𝐶 Func ∅) → (𝐶 ∈ V ∧ ∅ = (Base‘𝐶)))
3029exlimiv 1930 . . 3 (∃𝑓 𝑓 ∈ (𝐶 Func ∅) → (𝐶 ∈ V ∧ ∅ = (Base‘𝐶)))
3118, 19, 303syl 18 . 2 (∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑) → (𝐶 ∈ V ∧ ∅ = (Base‘𝐶)))
3212, 31impbii 209 1 ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  wral 3044  Vcvv 3438  c0 4286  {csn 4579  cop 4585  cfv 6486  (class class class)co 7353  Basecbs 17138  Catccat 17588   Func cfunc 17779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-map 8762  df-ixp 8832  df-nn 12147  df-slot 17111  df-ndx 17123  df-base 17139  df-cat 17592  df-func 17783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator