| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftermc3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of TermCat. See also df-termc 49459, dftermc2 49506. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftermc3 | ⊢ TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcarweu 49514 | . . . 4 ⊢ (𝑐 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝑐)) | |
| 2 | arweutermc 49516 | . . . 4 ⊢ (∃!𝑎 𝑎 ∈ (Arrow‘𝑐) → 𝑐 ∈ TermCat) | |
| 3 | 1, 2 | impbii 209 | . . 3 ⊢ (𝑐 ∈ TermCat ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐)) |
| 4 | euen1b 8999 | . . 3 ⊢ ((Arrow‘𝑐) ≈ 1o ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐)) | |
| 5 | 3, 4 | bitr4i 278 | . 2 ⊢ (𝑐 ∈ TermCat ↔ (Arrow‘𝑐) ≈ 1o) |
| 6 | 5 | eqabi 2863 | 1 ⊢ TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃!weu 2561 {cab 2707 class class class wbr 5107 ‘cfv 6511 1oc1o 8427 ≈ cen 8915 Arrowcarw 17984 TermCatctermc 49458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-1st 7968 df-2nd 7969 df-1o 8434 df-en 8919 df-cat 17629 df-cid 17630 df-doma 17986 df-coda 17987 df-homa 17988 df-arw 17989 df-thinc 49404 df-termc 49459 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |