Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftermc3 Structured version   Visualization version   GIF version

Theorem dftermc3 49515
Description: Alternate definition of TermCat. See also df-termc 49457, dftermc2 49504. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
dftermc3 TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o}

Proof of Theorem dftermc3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 termcarweu 49512 . . . 4 (𝑐 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
2 arweutermc 49514 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝑐) → 𝑐 ∈ TermCat)
31, 2impbii 209 . . 3 (𝑐 ∈ TermCat ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
4 euen1b 8977 . . 3 ((Arrow‘𝑐) ≈ 1o ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
53, 4bitr4i 278 . 2 (𝑐 ∈ TermCat ↔ (Arrow‘𝑐) ≈ 1o)
65eqabi 2863 1 TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  ∃!weu 2561  {cab 2707   class class class wbr 5102  cfv 6500  1oc1o 8405  cen 8893  Arrowcarw 17966  TermCatctermc 49456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-1st 7948  df-2nd 7949  df-1o 8412  df-en 8897  df-cat 17611  df-cid 17612  df-doma 17968  df-coda 17969  df-homa 17970  df-arw 17971  df-thinc 49402  df-termc 49457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator