| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftermc3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of TermCat. See also df-termc 49579, dftermc2 49626. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftermc3 | ⊢ TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcarweu 49634 | . . . 4 ⊢ (𝑐 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝑐)) | |
| 2 | arweutermc 49636 | . . . 4 ⊢ (∃!𝑎 𝑎 ∈ (Arrow‘𝑐) → 𝑐 ∈ TermCat) | |
| 3 | 1, 2 | impbii 209 | . . 3 ⊢ (𝑐 ∈ TermCat ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐)) |
| 4 | euen1b 8956 | . . 3 ⊢ ((Arrow‘𝑐) ≈ 1o ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐)) | |
| 5 | 3, 4 | bitr4i 278 | . 2 ⊢ (𝑐 ∈ TermCat ↔ (Arrow‘𝑐) ≈ 1o) |
| 6 | 5 | eqabi 2866 | 1 ⊢ TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∃!weu 2563 {cab 2709 class class class wbr 5093 ‘cfv 6487 1oc1o 8384 ≈ cen 8872 Arrowcarw 17935 TermCatctermc 49578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-ot 4584 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-1st 7927 df-2nd 7928 df-1o 8391 df-en 8876 df-cat 17580 df-cid 17581 df-doma 17937 df-coda 17938 df-homa 17939 df-arw 17940 df-thinc 49524 df-termc 49579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |