Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftermc3 Structured version   Visualization version   GIF version

Theorem dftermc3 49189
Description: Alternate definition of TermCat. See also df-termc 49145, dftermc2 49178. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
dftermc3 TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o}

Proof of Theorem dftermc3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 termcarweu 49186 . . . 4 (𝑐 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
2 arweutermc 49188 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝑐) → 𝑐 ∈ TermCat)
31, 2impbii 209 . . 3 (𝑐 ∈ TermCat ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
4 euen1b 9069 . . 3 ((Arrow‘𝑐) ≈ 1o ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
53, 4bitr4i 278 . 2 (𝑐 ∈ TermCat ↔ (Arrow‘𝑐) ≈ 1o)
65eqabi 2876 1 TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  ∃!weu 2567  {cab 2713   class class class wbr 5142  cfv 6560  1oc1o 8500  cen 8983  Arrowcarw 18068  TermCatctermc 49144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-ot 4634  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-1st 8015  df-2nd 8016  df-1o 8507  df-en 8987  df-cat 17712  df-cid 17713  df-doma 18070  df-coda 18071  df-homa 18072  df-arw 18073  df-thinc 49092  df-termc 49145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator