Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftermc3 Structured version   Visualization version   GIF version

Theorem dftermc3 49383
Description: Alternate definition of TermCat. See also df-termc 49326, dftermc2 49372. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
dftermc3 TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o}

Proof of Theorem dftermc3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 termcarweu 49380 . . . 4 (𝑐 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
2 arweutermc 49382 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝑐) → 𝑐 ∈ TermCat)
31, 2impbii 209 . . 3 (𝑐 ∈ TermCat ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
4 euen1b 9047 . . 3 ((Arrow‘𝑐) ≈ 1o ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
53, 4bitr4i 278 . 2 (𝑐 ∈ TermCat ↔ (Arrow‘𝑐) ≈ 1o)
65eqabi 2871 1 TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  ∃!weu 2568  {cab 2714   class class class wbr 5124  cfv 6536  1oc1o 8478  cen 8961  Arrowcarw 18040  TermCatctermc 49325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-1st 7993  df-2nd 7994  df-1o 8485  df-en 8965  df-cat 17685  df-cid 17686  df-doma 18042  df-coda 18043  df-homa 18044  df-arw 18045  df-thinc 49271  df-termc 49326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator