Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftermc3 Structured version   Visualization version   GIF version

Theorem dftermc3 49517
Description: Alternate definition of TermCat. See also df-termc 49459, dftermc2 49506. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
dftermc3 TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o}

Proof of Theorem dftermc3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 termcarweu 49514 . . . 4 (𝑐 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
2 arweutermc 49516 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝑐) → 𝑐 ∈ TermCat)
31, 2impbii 209 . . 3 (𝑐 ∈ TermCat ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
4 euen1b 8999 . . 3 ((Arrow‘𝑐) ≈ 1o ↔ ∃!𝑎 𝑎 ∈ (Arrow‘𝑐))
53, 4bitr4i 278 . 2 (𝑐 ∈ TermCat ↔ (Arrow‘𝑐) ≈ 1o)
65eqabi 2863 1 TermCat = {𝑐 ∣ (Arrow‘𝑐) ≈ 1o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  ∃!weu 2561  {cab 2707   class class class wbr 5107  cfv 6511  1oc1o 8427  cen 8915  Arrowcarw 17984  TermCatctermc 49458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-1o 8434  df-en 8919  df-cat 17629  df-cid 17630  df-doma 17986  df-coda 17987  df-homa 17988  df-arw 17989  df-thinc 49404  df-termc 49459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator