MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0catg Structured version   Visualization version   GIF version

Theorem 0catg 17636
Description: Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Assertion
Ref Expression
0catg ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)

Proof of Theorem 0catg
Dummy variables 𝑓 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → ∅ = (Base‘𝐶))
2 eqidd 2733 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → (Hom ‘𝐶) = (Hom ‘𝐶))
3 eqidd 2733 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → (comp‘𝐶) = (comp‘𝐶))
4 simpl 483 . 2 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶𝑉)
5 noel 4330 . . . 4 ¬ 𝑥 ∈ ∅
65pm2.21i 119 . . 3 (𝑥 ∈ ∅ → ∅ ∈ (𝑥(Hom ‘𝐶)𝑥))
76adantl 482 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ 𝑥 ∈ ∅) → ∅ ∈ (𝑥(Hom ‘𝐶)𝑥))
8 simpr1 1194 . . 3 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))) → 𝑥 ∈ ∅)
95pm2.21i 119 . . 3 (𝑥 ∈ ∅ → (∅(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
108, 9syl 17 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))) → (∅(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
11 simpr1 1194 . . 3 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ ∅)
125pm2.21i 119 . . 3 (𝑥 ∈ ∅ → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)∅) = 𝑓)
1311, 12syl 17 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)∅) = 𝑓)
14 simp21 1206 . . 3 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ ∅)
155pm2.21i 119 . . 3 (𝑥 ∈ ∅ → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1614, 15syl 17 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
17 simp2ll 1240 . . 3 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) ∧ (𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤))) → 𝑥 ∈ ∅)
185pm2.21i 119 . . 3 (𝑥 ∈ ∅ → (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
1917, 18syl 17 . 2 (((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) ∧ (𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤))) → (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
201, 2, 3, 4, 7, 10, 13, 16, 19iscatd 17621 1 ((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  c0 4322  cop 4634  cfv 6543  (class class class)co 7411  Basecbs 17148  Hom chom 17212  compcco 17213  Catccat 17612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-cat 17616
This theorem is referenced by:  0cat  17637  0thincg  47758
  Copyright terms: Public domain W3C validator