| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. 2
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → ∅ =
(Base‘𝐶)) |
| 2 | | eqidd 2737 |
. 2
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → (Hom ‘𝐶) = (Hom ‘𝐶)) |
| 3 | | eqidd 2737 |
. 2
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → (comp‘𝐶) = (comp‘𝐶)) |
| 4 | | simpl 482 |
. 2
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ 𝑉) |
| 5 | | noel 4337 |
. . . 4
⊢ ¬
𝑥 ∈
∅ |
| 6 | 5 | pm2.21i 119 |
. . 3
⊢ (𝑥 ∈ ∅ → ∅
∈ (𝑥(Hom ‘𝐶)𝑥)) |
| 7 | 6 | adantl 481 |
. 2
⊢ (((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) ∧ 𝑥 ∈ ∅) → ∅ ∈ (𝑥(Hom ‘𝐶)𝑥)) |
| 8 | | simpr1 1194 |
. . 3
⊢ (((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))) → 𝑥 ∈ ∅) |
| 9 | 5 | pm2.21i 119 |
. . 3
⊢ (𝑥 ∈ ∅ →
(∅(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
| 10 | 8, 9 | syl 17 |
. 2
⊢ (((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))) → (∅(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
| 11 | | simpr1 1194 |
. . 3
⊢ (((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ ∅) |
| 12 | 5 | pm2.21i 119 |
. . 3
⊢ (𝑥 ∈ ∅ → (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)∅) = 𝑓) |
| 13 | 11, 12 | syl 17 |
. 2
⊢ (((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)∅) = 𝑓) |
| 14 | | simp21 1206 |
. . 3
⊢ (((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ ∅) |
| 15 | 5 | pm2.21i 119 |
. . 3
⊢ (𝑥 ∈ ∅ → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
| 16 | 14, 15 | syl 17 |
. 2
⊢ (((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
| 17 | | simp2ll 1240 |
. . 3
⊢ (((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) ∧ (𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤))) → 𝑥 ∈ ∅) |
| 18 | 5 | pm2.21i 119 |
. . 3
⊢ (𝑥 ∈ ∅ → ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) |
| 19 | 17, 18 | syl 17 |
. 2
⊢ (((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) ∧ (𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐶)𝑤))) → ((ℎ(〈𝑦, 𝑧〉(comp‘𝐶)𝑤)𝑔)(〈𝑥, 𝑦〉(comp‘𝐶)𝑤)𝑓) = (ℎ(〈𝑥, 𝑧〉(comp‘𝐶)𝑤)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))) |
| 20 | 1, 2, 3, 4, 7, 10,
13, 16, 19 | iscatd 17717 |
1
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat) |