| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcciso | Structured version Visualization version GIF version | ||
| Description: A category is isomorphic to a terminal category iff it itself is terminal. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcciso.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| termcciso.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcciso.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcciso.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termcciso.t | ⊢ (𝜑 → 𝑋 ∈ TermCat) |
| Ref | Expression |
|---|---|
| termcciso | ⊢ (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐 ‘𝐶)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcciso.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | termcciso.c | . . . . . . 7 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 3 | termcciso.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 2, 3 | elbasfv 17236 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑈 ∈ V) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ V) |
| 6 | 2 | catccat 18125 | . . . . 5 ⊢ (𝑈 ∈ V → 𝐶 ∈ Cat) |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝐶 ∈ Cat) |
| 9 | 2, 3, 5 | catcbas 18118 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
| 10 | 1, 9 | eleqtrd 2835 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
| 11 | 10 | elin1d 4184 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 12 | termcciso.t | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ TermCat) | |
| 13 | 2, 5, 11, 12 | termcterm 49211 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (TermO‘𝐶)) |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑋 ∈ (TermO‘𝐶)) |
| 15 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑈 ∈ V) |
| 16 | termcciso.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ 𝐵) |
| 18 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝐵 = (𝑈 ∩ Cat)) |
| 19 | 17, 18 | eleqtrd 2835 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ (𝑈 ∩ Cat)) |
| 20 | 19 | elin1d 4184 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ 𝑈) |
| 21 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ TermCat) | |
| 22 | 2, 15, 20, 21 | termcterm 49211 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ (TermO‘𝐶)) |
| 23 | 8, 14, 22 | termoeu1w 18036 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| 24 | 11, 12 | elind 4180 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ TermCat)) |
| 25 | 24 | ne0d 4322 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → (𝑈 ∩ TermCat) ≠ ∅) |
| 27 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝐶 ∈ Cat) |
| 28 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝑋 ∈ (TermO‘𝐶)) |
| 29 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝑋( ≃𝑐 ‘𝐶)𝑌) | |
| 30 | 27, 28, 29 | termoeu2 48989 | . . 3 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝑌 ∈ (TermO‘𝐶)) |
| 31 | 2, 26, 30 | termcterm2 49212 | . 2 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝑌 ∈ TermCat) |
| 32 | 23, 31 | impbida 800 | 1 ⊢ (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐 ‘𝐶)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3463 ∩ cin 3930 ∅c0 4313 class class class wbr 5123 ‘cfv 6541 Basecbs 17230 Catccat 17679 ≃𝑐 ccic 17811 TermOctermo 17999 CatCatccatc 18115 TermCatctermc 49171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17298 df-cco 17299 df-cat 17683 df-cid 17684 df-homf 17685 df-comf 17686 df-oppc 17727 df-sect 17763 df-inv 17764 df-iso 17765 df-cic 17812 df-func 17875 df-idfu 17876 df-cofu 17877 df-full 17923 df-fth 17924 df-inito 18001 df-termo 18002 df-catc 18116 df-thinc 49119 df-termc 49172 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |