| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcciso | Structured version Visualization version GIF version | ||
| Description: A category is isomorphic to a terminal category iff it itself is terminal. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcciso.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| termcciso.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcciso.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcciso.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termcciso.t | ⊢ (𝜑 → 𝑋 ∈ TermCat) |
| Ref | Expression |
|---|---|
| termcciso | ⊢ (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐 ‘𝐶)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcciso.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | termcciso.c | . . . . . . 7 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 3 | termcciso.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 2, 3 | elbasfv 17121 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑈 ∈ V) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ V) |
| 6 | 2 | catccat 18010 | . . . . 5 ⊢ (𝑈 ∈ V → 𝐶 ∈ Cat) |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝐶 ∈ Cat) |
| 9 | 2, 3, 5 | catcbas 18003 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
| 10 | 1, 9 | eleqtrd 2833 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
| 11 | 10 | elin1d 4149 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 12 | termcciso.t | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ TermCat) | |
| 13 | 2, 5, 11, 12 | termcterm 49545 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (TermO‘𝐶)) |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑋 ∈ (TermO‘𝐶)) |
| 15 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑈 ∈ V) |
| 16 | termcciso.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ 𝐵) |
| 18 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝐵 = (𝑈 ∩ Cat)) |
| 19 | 17, 18 | eleqtrd 2833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ (𝑈 ∩ Cat)) |
| 20 | 19 | elin1d 4149 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ 𝑈) |
| 21 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ TermCat) | |
| 22 | 2, 15, 20, 21 | termcterm 49545 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑌 ∈ (TermO‘𝐶)) |
| 23 | 8, 14, 22 | termoeu1w 17921 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ TermCat) → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| 24 | 11, 12 | elind 4145 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ TermCat)) |
| 25 | 24 | ne0d 4287 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → (𝑈 ∩ TermCat) ≠ ∅) |
| 27 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝐶 ∈ Cat) |
| 28 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝑋 ∈ (TermO‘𝐶)) |
| 29 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝑋( ≃𝑐 ‘𝐶)𝑌) | |
| 30 | 27, 28, 29 | termoeu2 49270 | . . 3 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝑌 ∈ (TermO‘𝐶)) |
| 31 | 2, 26, 30 | termcterm2 49546 | . 2 ⊢ ((𝜑 ∧ 𝑋( ≃𝑐 ‘𝐶)𝑌) → 𝑌 ∈ TermCat) |
| 32 | 23, 31 | impbida 800 | 1 ⊢ (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐 ‘𝐶)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∩ cin 3896 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 Basecbs 17115 Catccat 17565 ≃𝑐 ccic 17697 TermOctermo 17884 CatCatccatc 18000 TermCatctermc 49504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-cat 17569 df-cid 17570 df-homf 17571 df-comf 17572 df-oppc 17613 df-sect 17649 df-inv 17650 df-iso 17651 df-cic 17698 df-func 17760 df-idfu 17761 df-cofu 17762 df-full 17808 df-fth 17809 df-inito 17886 df-termo 17887 df-catc 18001 df-thinc 49450 df-termc 49505 |
| This theorem is referenced by: termfucterm 49576 uobeqterm 49578 |
| Copyright terms: Public domain | W3C validator |