Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12-afv2 46033
Description: Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27), analogous to tz6.12 6916. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12-afv2 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem tz6.12-afv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . . . . 9 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ V)
2 vex 3478 . . . . . . . . . 10 𝑦 ∈ V
32a1i 11 . . . . . . . . 9 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ V)
4 df-br 5149 . . . . . . . . . . 11 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
54biimpri 227 . . . . . . . . . 10 (⟨𝐴, 𝑦⟩ ∈ 𝐹𝐴𝐹𝑦)
65adantl 482 . . . . . . . . 9 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴𝐹𝑦)
7 breldmg 5909 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑦 ∈ V ∧ 𝐴𝐹𝑦) → 𝐴 ∈ dom 𝐹)
81, 3, 6, 7syl3anc 1371 . . . . . . . 8 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
9 simpl 483 . . . . . . . . . 10 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
10 velsn 4644 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
11 breq1 5151 . . . . . . . . . . . . . . . . . . 19 (𝐴 = 𝑥 → (𝐴𝐹𝑦𝑥𝐹𝑦))
124, 11bitr3id 284 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝑥 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1312eqcoms 2740 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1413eubidv 2580 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦 𝑥𝐹𝑦))
1514biimpd 228 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1610, 15sylbi 216 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝐴} → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1716com12 32 . . . . . . . . . . . . 13 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1817adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1918ralrimiv 3145 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
20 fnres 6677 . . . . . . . . . . . 12 ((𝐹 ↾ {𝐴}) Fn {𝐴} ↔ ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
21 fnfun 6649 . . . . . . . . . . . 12 ((𝐹 ↾ {𝐴}) Fn {𝐴} → Fun (𝐹 ↾ {𝐴}))
2220, 21sylbir 234 . . . . . . . . . . 11 (∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦 → Fun (𝐹 ↾ {𝐴}))
2319, 22syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → Fun (𝐹 ↾ {𝐴}))
249, 23jca 512 . . . . . . . . 9 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2524ex 413 . . . . . . . 8 (𝐴 ∈ dom 𝐹 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
268, 25syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
2726impr 455 . . . . . 6 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
28 df-dfat 45912 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2927, 28sylibr 233 . . . . 5 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → 𝐹 defAt 𝐴)
30 dfatafv2iota 46003 . . . . 5 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑦𝐴𝐹𝑦))
3129, 30syl 17 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹''''𝐴) = (℩𝑦𝐴𝐹𝑦))
324bicomi 223 . . . . . . . . 9 (⟨𝐴, 𝑦⟩ ∈ 𝐹𝐴𝐹𝑦)
3332eubii 2579 . . . . . . . 8 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦 𝐴𝐹𝑦)
3433biimpi 215 . . . . . . 7 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝐴𝐹𝑦)
355, 34anim12i 613 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦))
3635adantl 482 . . . . 5 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦))
37 iota1 6520 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦))
3837biimpac 479 . . . . 5 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
3936, 38syl 17 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
4031, 39eqtrd 2772 . . 3 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹''''𝐴) = 𝑦)
4140ex 413 . 2 (𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦))
42 eu2ndop1stv 45918 . . . . 5 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹𝐴 ∈ V)
4342pm2.24d 151 . . . 4 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (¬ 𝐴 ∈ V → (𝐹''''𝐴) = 𝑦))
4443adantl 482 . . 3 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (¬ 𝐴 ∈ V → (𝐹''''𝐴) = 𝑦))
4544com12 32 . 2 𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦))
4641, 45pm2.61i 182 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  ∃!weu 2562  wral 3061  Vcvv 3474  {csn 4628  cop 4634   class class class wbr 5148  dom cdm 5676  cres 5678  cio 6493  Fun wfun 6537   Fn wfn 6538   defAt wdfat 45909  ''''cafv2 46001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-dfat 45912  df-afv2 46002
This theorem is referenced by:  tz6.12-1-afv2  46034
  Copyright terms: Public domain W3C validator