Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12-afv2 47155
Description: Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27), analogous to tz6.12 6945. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12-afv2 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem tz6.12-afv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . . 9 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ V)
2 vex 3492 . . . . . . . . . 10 𝑦 ∈ V
32a1i 11 . . . . . . . . 9 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ V)
4 df-br 5167 . . . . . . . . . . 11 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
54biimpri 228 . . . . . . . . . 10 (⟨𝐴, 𝑦⟩ ∈ 𝐹𝐴𝐹𝑦)
65adantl 481 . . . . . . . . 9 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴𝐹𝑦)
7 breldmg 5934 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑦 ∈ V ∧ 𝐴𝐹𝑦) → 𝐴 ∈ dom 𝐹)
81, 3, 6, 7syl3anc 1371 . . . . . . . 8 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
9 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
10 velsn 4664 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
11 breq1 5169 . . . . . . . . . . . . . . . . . . 19 (𝐴 = 𝑥 → (𝐴𝐹𝑦𝑥𝐹𝑦))
124, 11bitr3id 285 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝑥 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1312eqcoms 2748 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1413eubidv 2589 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦 𝑥𝐹𝑦))
1514biimpd 229 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1610, 15sylbi 217 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝐴} → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1716com12 32 . . . . . . . . . . . . 13 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1817adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1918ralrimiv 3151 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
20 fnres 6707 . . . . . . . . . . . 12 ((𝐹 ↾ {𝐴}) Fn {𝐴} ↔ ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
21 fnfun 6679 . . . . . . . . . . . 12 ((𝐹 ↾ {𝐴}) Fn {𝐴} → Fun (𝐹 ↾ {𝐴}))
2220, 21sylbir 235 . . . . . . . . . . 11 (∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦 → Fun (𝐹 ↾ {𝐴}))
2319, 22syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → Fun (𝐹 ↾ {𝐴}))
249, 23jca 511 . . . . . . . . 9 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2524ex 412 . . . . . . . 8 (𝐴 ∈ dom 𝐹 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
268, 25syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
2726impr 454 . . . . . 6 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
28 df-dfat 47034 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2927, 28sylibr 234 . . . . 5 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → 𝐹 defAt 𝐴)
30 dfatafv2iota 47125 . . . . 5 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑦𝐴𝐹𝑦))
3129, 30syl 17 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹''''𝐴) = (℩𝑦𝐴𝐹𝑦))
324bicomi 224 . . . . . . . . 9 (⟨𝐴, 𝑦⟩ ∈ 𝐹𝐴𝐹𝑦)
3332eubii 2588 . . . . . . . 8 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦 𝐴𝐹𝑦)
3433biimpi 216 . . . . . . 7 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝐴𝐹𝑦)
355, 34anim12i 612 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦))
3635adantl 481 . . . . 5 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦))
37 iota1 6550 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦))
3837biimpac 478 . . . . 5 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
3936, 38syl 17 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
4031, 39eqtrd 2780 . . 3 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹''''𝐴) = 𝑦)
4140ex 412 . 2 (𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦))
42 eu2ndop1stv 47040 . . . . 5 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹𝐴 ∈ V)
4342pm2.24d 151 . . . 4 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (¬ 𝐴 ∈ V → (𝐹''''𝐴) = 𝑦))
4443adantl 481 . . 3 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (¬ 𝐴 ∈ V → (𝐹''''𝐴) = 𝑦))
4544com12 32 . 2 𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦))
4641, 45pm2.61i 182 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ∃!weu 2571  wral 3067  Vcvv 3488  {csn 4648  cop 4654   class class class wbr 5166  dom cdm 5700  cres 5702  cio 6523  Fun wfun 6567   Fn wfn 6568   defAt wdfat 47031  ''''cafv2 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-dfat 47034  df-afv2 47124
This theorem is referenced by:  tz6.12-1-afv2  47156
  Copyright terms: Public domain W3C validator