![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv23 | Structured version Visualization version GIF version |
Description: A definition of function value in terms of iota, analogous to dffv3 6880. (Contributed by AV, 6-Sep-2022.) |
Ref | Expression |
---|---|
dfafv23 | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfatafv2iota 46472 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
2 | dfdfat2 46390 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
3 | 2 | simplbi 497 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 → 𝐴 ∈ dom 𝐹) |
4 | elimasng 6080 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)) | |
5 | 3, 4 | sylan 579 | . . . . 5 ⊢ ((𝐹 defAt 𝐴 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)) |
6 | df-br 5142 | . . . . 5 ⊢ (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹) | |
7 | 5, 6 | bitr4di 289 | . . . 4 ⊢ ((𝐹 defAt 𝐴 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
8 | 7 | elvd 3475 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
9 | 8 | iotabidv 6520 | . 2 ⊢ (𝐹 defAt 𝐴 → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
10 | 1, 9 | eqtr4d 2769 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃!weu 2556 Vcvv 3468 {csn 4623 ⟨cop 4629 class class class wbr 5141 dom cdm 5669 “ cima 5672 ℩cio 6486 defAt wdfat 46378 ''''cafv2 46470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-dfat 46381 df-afv2 46471 |
This theorem is referenced by: afv2co2 46519 |
Copyright terms: Public domain | W3C validator |