Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv23 | Structured version Visualization version GIF version |
Description: A definition of function value in terms of iota, analogous to dffv3 6808. (Contributed by AV, 6-Sep-2022.) |
Ref | Expression |
---|---|
dfafv23 | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfatafv2iota 44967 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
2 | dfdfat2 44885 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
3 | 2 | simplbi 498 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 → 𝐴 ∈ dom 𝐹) |
4 | elimasng 6014 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) | |
5 | 3, 4 | sylan 580 | . . . . 5 ⊢ ((𝐹 defAt 𝐴 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) |
6 | df-br 5088 | . . . . 5 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
7 | 5, 6 | bitr4di 288 | . . . 4 ⊢ ((𝐹 defAt 𝐴 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
8 | 7 | elvd 3448 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
9 | 8 | iotabidv 6450 | . 2 ⊢ (𝐹 defAt 𝐴 → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
10 | 1, 9 | eqtr4d 2780 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃!weu 2567 Vcvv 3441 {csn 4571 〈cop 4577 class class class wbr 5087 dom cdm 5608 “ cima 5611 ℩cio 6416 defAt wdfat 44873 ''''cafv2 44965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-dfat 44876 df-afv2 44966 |
This theorem is referenced by: afv2co2 45014 |
Copyright terms: Public domain | W3C validator |