| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv23 | Structured version Visualization version GIF version | ||
| Description: A definition of function value in terms of iota, analogous to dffv3 6857. (Contributed by AV, 6-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfafv23 | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfatafv2iota 47215 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
| 2 | dfdfat2 47133 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
| 3 | 2 | simplbi 497 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 → 𝐴 ∈ dom 𝐹) |
| 4 | elimasng 6063 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) | |
| 5 | 3, 4 | sylan 580 | . . . . 5 ⊢ ((𝐹 defAt 𝐴 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) |
| 6 | df-br 5111 | . . . . 5 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
| 7 | 5, 6 | bitr4di 289 | . . . 4 ⊢ ((𝐹 defAt 𝐴 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 8 | 7 | elvd 3456 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 9 | 8 | iotabidv 6498 | . 2 ⊢ (𝐹 defAt 𝐴 → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
| 10 | 1, 9 | eqtr4d 2768 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2562 Vcvv 3450 {csn 4592 〈cop 4598 class class class wbr 5110 dom cdm 5641 “ cima 5644 ℩cio 6465 defAt wdfat 47121 ''''cafv2 47213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-dfat 47124 df-afv2 47214 |
| This theorem is referenced by: afv2co2 47262 |
| Copyright terms: Public domain | W3C validator |