Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafv23 Structured version   Visualization version   GIF version

Theorem dfafv23 47292
Description: A definition of function value in terms of iota, analogous to dffv3 6818. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
dfafv23 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem dfafv23
StepHypRef Expression
1 dfatafv2iota 47249 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
2 dfdfat2 47167 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
32simplbi 497 . . . . . 6 (𝐹 defAt 𝐴𝐴 ∈ dom 𝐹)
4 elimasng 6037 . . . . . 6 ((𝐴 ∈ dom 𝐹𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
53, 4sylan 580 . . . . 5 ((𝐹 defAt 𝐴𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
6 df-br 5090 . . . . 5 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
75, 6bitr4di 289 . . . 4 ((𝐹 defAt 𝐴𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
87elvd 3442 . . 3 (𝐹 defAt 𝐴 → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
98iotabidv 6465 . 2 (𝐹 defAt 𝐴 → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥))
101, 9eqtr4d 2769 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ∃!weu 2563  Vcvv 3436  {csn 4573  cop 4579   class class class wbr 5089  dom cdm 5614  cima 5617  cio 6435   defAt wdfat 47155  ''''cafv2 47247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-dfat 47158  df-afv2 47248
This theorem is referenced by:  afv2co2  47296
  Copyright terms: Public domain W3C validator