| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2ex | Structured version Visualization version GIF version | ||
| Description: The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfatafv2ex | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfatafv2iota 47240 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
| 2 | iotaex 6457 | . 2 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
| 3 | 1, 2 | eqeltrdi 2839 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 ℩cio 6435 defAt wdfat 47146 ''''cafv2 47238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-uni 4860 df-iota 6437 df-afv2 47239 |
| This theorem is referenced by: dfatbrafv2b 47275 fnbrafv2b 47278 dfatdmfcoafv2 47284 dfatcolem 47285 |
| Copyright terms: Public domain | W3C validator |