![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2ex | Structured version Visualization version GIF version |
Description: The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.) |
Ref | Expression |
---|---|
dfatafv2ex | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfatafv2iota 47125 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
2 | iotaex 6546 | . 2 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
3 | 1, 2 | eqeltrdi 2852 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ℩cio 6523 defAt wdfat 47031 ''''cafv2 47123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-afv2 47124 |
This theorem is referenced by: dfatbrafv2b 47160 fnbrafv2b 47163 dfatdmfcoafv2 47169 dfatcolem 47170 |
Copyright terms: Public domain | W3C validator |