Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2ex Structured version   Visualization version   GIF version

Theorem dfatafv2ex 47190
Description: The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
dfatafv2ex (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V)

Proof of Theorem dfatafv2ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfatafv2iota 47187 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
2 iotaex 6503 . 2 (℩𝑥𝐴𝐹𝑥) ∈ V
31, 2eqeltrdi 2842 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459   class class class wbr 5119  cio 6481   defAt wdfat 47093  ''''cafv2 47185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-uni 4884  df-iota 6483  df-afv2 47186
This theorem is referenced by:  dfatbrafv2b  47222  fnbrafv2b  47225  dfatdmfcoafv2  47231  dfatcolem  47232
  Copyright terms: Public domain W3C validator