Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2ex | Structured version Visualization version GIF version |
Description: The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.) |
Ref | Expression |
---|---|
dfatafv2ex | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfatafv2iota 44156 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
2 | iotaex 6315 | . 2 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
3 | 1, 2 | eqeltrdi 2860 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3409 class class class wbr 5032 ℩cio 6292 defAt wdfat 44062 ''''cafv2 44154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-nul 5176 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-uni 4799 df-iota 6294 df-afv2 44155 |
This theorem is referenced by: dfatbrafv2b 44191 fnbrafv2b 44194 dfatdmfcoafv2 44200 dfatcolem 44201 |
Copyright terms: Public domain | W3C validator |