Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2ex Structured version   Visualization version   GIF version

Theorem dfatafv2ex 47128
Description: The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
dfatafv2ex (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V)

Proof of Theorem dfatafv2ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfatafv2iota 47125 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
2 iotaex 6546 . 2 (℩𝑥𝐴𝐹𝑥) ∈ V
31, 2eqeltrdi 2852 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488   class class class wbr 5166  cio 6523   defAt wdfat 47031  ''''cafv2 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525  df-afv2 47124
This theorem is referenced by:  dfatbrafv2b  47160  fnbrafv2b  47163  dfatdmfcoafv2  47169  dfatcolem  47170
  Copyright terms: Public domain W3C validator