| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2ex | Structured version Visualization version GIF version | ||
| Description: The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfatafv2ex | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfatafv2iota 47215 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
| 2 | iotaex 6487 | . 2 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
| 3 | 1, 2 | eqeltrdi 2837 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ℩cio 6465 defAt wdfat 47121 ''''cafv2 47213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 df-afv2 47214 |
| This theorem is referenced by: dfatbrafv2b 47250 fnbrafv2b 47253 dfatdmfcoafv2 47259 dfatcolem 47260 |
| Copyright terms: Public domain | W3C validator |