![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2ex | Structured version Visualization version GIF version |
Description: The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.) |
Ref | Expression |
---|---|
dfatafv2ex | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfatafv2iota 46730 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
2 | iotaex 6522 | . 2 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
3 | 1, 2 | eqeltrdi 2833 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Vcvv 3461 class class class wbr 5149 ℩cio 6499 defAt wdfat 46636 ''''cafv2 46728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-uni 4910 df-iota 6501 df-afv2 46729 |
This theorem is referenced by: dfatbrafv2b 46765 fnbrafv2b 46768 dfatdmfcoafv2 46774 dfatcolem 46775 |
Copyright terms: Public domain | W3C validator |