Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2ex Structured version   Visualization version   GIF version

Theorem dfatafv2ex 44705
Description: The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
dfatafv2ex (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V)

Proof of Theorem dfatafv2ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfatafv2iota 44702 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
2 iotaex 6413 . 2 (℩𝑥𝐴𝐹𝑥) ∈ V
31, 2eqeltrdi 2847 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432   class class class wbr 5074  cio 6389   defAt wdfat 44608  ''''cafv2 44700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-uni 4840  df-iota 6391  df-afv2 44701
This theorem is referenced by:  dfatbrafv2b  44737  fnbrafv2b  44740  dfatdmfcoafv2  44746  dfatcolem  44747
  Copyright terms: Public domain W3C validator