Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eu Structured version   Visualization version   GIF version

Theorem afv2eu 44788
Description: The value of a function at a unique point, analogous to fveu 6793. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
afv2eu (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem afv2eu
StepHypRef Expression
1 eubrv 44587 . 2 (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ V)
2 euex 2575 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥)
3 eldmg 5820 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥))
42, 3syl5ibrcom 247 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹))
54impcom 409 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹)
6 dfdfat2 44678 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
7 dfatafv2iota 44760 . . . . . . . . 9 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
8 iotauni 6433 . . . . . . . . 9 (∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = {𝑥𝐴𝐹𝑥})
97, 8sylan9eq 2796 . . . . . . . 8 ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})
109ex 414 . . . . . . 7 (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥}))
116, 10sylbir 234 . . . . . 6 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥}))
1211expcom 415 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})))
1312pm2.43a 54 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥}))
1413adantl 483 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥}))
155, 14mpd 15 . 2 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})
161, 15mpancom 686 1 (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wex 1779  wcel 2104  ∃!weu 2566  {cab 2713  Vcvv 3437   cuni 4844   class class class wbr 5081  dom cdm 5600  cio 6408   defAt wdfat 44666  ''''cafv2 44758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-res 5612  df-iota 6410  df-fun 6460  df-dfat 44669  df-afv2 44759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator