![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eu | Structured version Visualization version GIF version |
Description: The value of a function at a unique point, analogous to fveu 6915. (Contributed by AV, 5-Sep-2022.) |
Ref | Expression |
---|---|
afv2eu | ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubrv 46936 | . 2 ⊢ (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ V) | |
2 | euex 2574 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
3 | eldmg 5929 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹)) |
5 | 4 | impcom 407 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹) |
6 | dfdfat2 47029 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
7 | dfatafv2iota 47111 | . . . . . . . . 9 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
8 | iotauni 6554 | . . . . . . . . 9 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | |
9 | 7, 8 | sylan9eq 2794 | . . . . . . . 8 ⊢ ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
10 | 9 | ex 412 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
11 | 6, 10 | sylbir 235 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
12 | 11 | expcom 413 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}))) |
13 | 12 | pm2.43a 54 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
15 | 5, 14 | mpd 15 | . 2 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
16 | 1, 15 | mpancom 687 | 1 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2103 ∃!weu 2565 {cab 2711 Vcvv 3484 ∪ cuni 4937 class class class wbr 5176 dom cdm 5706 ℩cio 6529 defAt wdfat 47017 ''''cafv2 47109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-12 2173 ax-ext 2705 ax-sep 5327 ax-nul 5334 ax-pr 5457 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3064 df-rex 3073 df-rab 3440 df-v 3486 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4354 df-if 4555 df-sn 4655 df-pr 4657 df-op 4661 df-uni 4938 df-br 5177 df-opab 5239 df-id 5604 df-xp 5712 df-rel 5713 df-cnv 5714 df-co 5715 df-dm 5716 df-res 5718 df-iota 6531 df-fun 6581 df-dfat 47020 df-afv2 47110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |