Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eu Structured version   Visualization version   GIF version

Theorem afv2eu 42789
Description: The value of a function at a unique point, analogous to fveu 6484. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
afv2eu (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem afv2eu
StepHypRef Expression
1 eubrv 42621 . 2 (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ V)
2 euex 2590 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥)
3 eldmg 5610 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥))
42, 3syl5ibrcom 239 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹))
54impcom 399 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹)
6 dfdfat2 42679 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
7 dfatafv2iota 42761 . . . . . . . . 9 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
8 iotauni 6158 . . . . . . . . 9 (∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = {𝑥𝐴𝐹𝑥})
97, 8sylan9eq 2828 . . . . . . . 8 ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})
109ex 405 . . . . . . 7 (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥}))
116, 10sylbir 227 . . . . . 6 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥}))
1211expcom 406 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})))
1312pm2.43a 54 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥}))
1413adantl 474 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥}))
155, 14mpd 15 . 2 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})
161, 15mpancom 675 1 (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = {𝑥𝐴𝐹𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wex 1742  wcel 2048  ∃!weu 2579  {cab 2753  Vcvv 3409   cuni 4706   class class class wbr 4923  dom cdm 5400  cio 6144   defAt wdfat 42667  ''''cafv2 42759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-res 5412  df-iota 6146  df-fun 6184  df-dfat 42670  df-afv2 42760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator