| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eu | Structured version Visualization version GIF version | ||
| Description: The value of a function at a unique point, analogous to fveu 6895. (Contributed by AV, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2eu | ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubrv 47047 | . 2 ⊢ (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ V) | |
| 2 | euex 2577 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
| 3 | eldmg 5909 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹)) |
| 5 | 4 | impcom 407 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹) |
| 6 | dfdfat2 47140 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
| 7 | dfatafv2iota 47222 | . . . . . . . . 9 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | |
| 8 | iotauni 6536 | . . . . . . . . 9 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | |
| 9 | 7, 8 | sylan9eq 2797 | . . . . . . . 8 ⊢ ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| 10 | 9 | ex 412 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
| 11 | 6, 10 | sylbir 235 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
| 12 | 11 | expcom 413 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}))) |
| 13 | 12 | pm2.43a 54 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
| 15 | 5, 14 | mpd 15 | . 2 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| 16 | 1, 15 | mpancom 688 | 1 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃!weu 2568 {cab 2714 Vcvv 3480 ∪ cuni 4907 class class class wbr 5143 dom cdm 5685 ℩cio 6512 defAt wdfat 47128 ''''cafv2 47220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-dfat 47131 df-afv2 47221 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |