| Step | Hyp | Ref
| Expression |
| 1 | | df-dfat 47131 |
. . . . 5
⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| 2 | | elin 3967 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹)) |
| 3 | 2 | biimpri 228 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐵 ∩ dom 𝐹)) |
| 4 | | dmres 6030 |
. . . . . . . . 9
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
| 5 | 3, 4 | eleqtrrdi 2852 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom (𝐹 ↾ 𝐵)) |
| 6 | 5 | ex 412 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ 𝐵))) |
| 7 | | snssi 4808 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| 8 | 7 | resabs1d 6026 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵) ↾ {𝐴}) = (𝐹 ↾ {𝐴})) |
| 9 | 8 | eqcomd 2743 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐵 → (𝐹 ↾ {𝐴}) = ((𝐹 ↾ 𝐵) ↾ {𝐴})) |
| 10 | 9 | funeqd 6588 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
| 11 | 10 | biimpd 229 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → (Fun (𝐹 ↾ {𝐴}) → Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
| 12 | 6, 11 | anim12d 609 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})))) |
| 13 | 12 | com12 32 |
. . . . 5
⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ 𝐵 → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})))) |
| 14 | 1, 13 | sylbi 217 |
. . . 4
⊢ (𝐹 defAt 𝐴 → (𝐴 ∈ 𝐵 → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})))) |
| 15 | 14 | imp 406 |
. . 3
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
| 16 | | df-dfat 47131 |
. . . 4
⊢ ((𝐹 ↾ 𝐵) defAt 𝐴 ↔ (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
| 17 | | dfatafv2iota 47222 |
. . . 4
⊢ ((𝐹 ↾ 𝐵) defAt 𝐴 → ((𝐹 ↾ 𝐵)''''𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥)) |
| 18 | 16, 17 | sylbir 235 |
. . 3
⊢ ((𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})) → ((𝐹 ↾ 𝐵)''''𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥)) |
| 19 | 15, 18 | syl 17 |
. 2
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)''''𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥)) |
| 20 | | vex 3484 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 21 | 20 | brresi 6006 |
. . . . 5
⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴𝐹𝑥)) |
| 22 | 21 | baib 535 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
| 23 | 22 | iotabidv 6545 |
. . 3
⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
| 24 | 23 | adantl 481 |
. 2
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
| 25 | | dfatafv2iota 47222 |
. . . 4
⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
| 26 | 25 | eqcomd 2743 |
. . 3
⊢ (𝐹 defAt 𝐴 → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴)) |
| 27 | 26 | adantr 480 |
. 2
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴)) |
| 28 | 19, 24, 27 | 3eqtrd 2781 |
1
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)''''𝐴) = (𝐹''''𝐴)) |