Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2res Structured version   Visualization version   GIF version

Theorem afv2res 44618
Description: The value of a restricted function for an argument at which the function is defined. Analog to fvres 6775. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
afv2res ((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (𝐹''''𝐴))

Proof of Theorem afv2res
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-dfat 44498 . . . . 5 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 elin 3899 . . . . . . . . . 10 (𝐴 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝐴𝐵𝐴 ∈ dom 𝐹))
32biimpri 227 . . . . . . . . 9 ((𝐴𝐵𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐵 ∩ dom 𝐹))
4 dmres 5902 . . . . . . . . 9 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
53, 4eleqtrrdi 2850 . . . . . . . 8 ((𝐴𝐵𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom (𝐹𝐵))
65ex 412 . . . . . . 7 (𝐴𝐵 → (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹𝐵)))
7 snssi 4738 . . . . . . . . . . 11 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
87resabs1d 5911 . . . . . . . . . 10 (𝐴𝐵 → ((𝐹𝐵) ↾ {𝐴}) = (𝐹 ↾ {𝐴}))
98eqcomd 2744 . . . . . . . . 9 (𝐴𝐵 → (𝐹 ↾ {𝐴}) = ((𝐹𝐵) ↾ {𝐴}))
109funeqd 6440 . . . . . . . 8 (𝐴𝐵 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun ((𝐹𝐵) ↾ {𝐴})))
1110biimpd 228 . . . . . . 7 (𝐴𝐵 → (Fun (𝐹 ↾ {𝐴}) → Fun ((𝐹𝐵) ↾ {𝐴})))
126, 11anim12d 608 . . . . . 6 (𝐴𝐵 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
1312com12 32 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐵 → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
141, 13sylbi 216 . . . 4 (𝐹 defAt 𝐴 → (𝐴𝐵 → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
1514imp 406 . . 3 ((𝐹 defAt 𝐴𝐴𝐵) → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})))
16 df-dfat 44498 . . . 4 ((𝐹𝐵) defAt 𝐴 ↔ (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})))
17 dfatafv2iota 44589 . . . 4 ((𝐹𝐵) defAt 𝐴 → ((𝐹𝐵)''''𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥))
1816, 17sylbir 234 . . 3 ((𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})) → ((𝐹𝐵)''''𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥))
1915, 18syl 17 . 2 ((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥))
20 vex 3426 . . . . . 6 𝑥 ∈ V
2120brresi 5889 . . . . 5 (𝐴(𝐹𝐵)𝑥 ↔ (𝐴𝐵𝐴𝐹𝑥))
2221baib 535 . . . 4 (𝐴𝐵 → (𝐴(𝐹𝐵)𝑥𝐴𝐹𝑥))
2322iotabidv 6402 . . 3 (𝐴𝐵 → (℩𝑥𝐴(𝐹𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥))
2423adantl 481 . 2 ((𝐹 defAt 𝐴𝐴𝐵) → (℩𝑥𝐴(𝐹𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥))
25 dfatafv2iota 44589 . . . 4 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
2625eqcomd 2744 . . 3 (𝐹 defAt 𝐴 → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴))
2726adantr 480 . 2 ((𝐹 defAt 𝐴𝐴𝐵) → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴))
2819, 24, 273eqtrd 2782 1 ((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (𝐹''''𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3882  {csn 4558   class class class wbr 5070  dom cdm 5580  cres 5582  cio 6374  Fun wfun 6412   defAt wdfat 44495  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-dfat 44498  df-afv2 44588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator