Step | Hyp | Ref
| Expression |
1 | | df-dfat 44498 |
. . . . 5
⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
2 | | elin 3899 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹)) |
3 | 2 | biimpri 227 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐵 ∩ dom 𝐹)) |
4 | | dmres 5902 |
. . . . . . . . 9
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
5 | 3, 4 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom (𝐹 ↾ 𝐵)) |
6 | 5 | ex 412 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ 𝐵))) |
7 | | snssi 4738 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
8 | 7 | resabs1d 5911 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵) ↾ {𝐴}) = (𝐹 ↾ {𝐴})) |
9 | 8 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐵 → (𝐹 ↾ {𝐴}) = ((𝐹 ↾ 𝐵) ↾ {𝐴})) |
10 | 9 | funeqd 6440 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
11 | 10 | biimpd 228 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → (Fun (𝐹 ↾ {𝐴}) → Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
12 | 6, 11 | anim12d 608 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})))) |
13 | 12 | com12 32 |
. . . . 5
⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ 𝐵 → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})))) |
14 | 1, 13 | sylbi 216 |
. . . 4
⊢ (𝐹 defAt 𝐴 → (𝐴 ∈ 𝐵 → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})))) |
15 | 14 | imp 406 |
. . 3
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
16 | | df-dfat 44498 |
. . . 4
⊢ ((𝐹 ↾ 𝐵) defAt 𝐴 ↔ (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
17 | | dfatafv2iota 44589 |
. . . 4
⊢ ((𝐹 ↾ 𝐵) defAt 𝐴 → ((𝐹 ↾ 𝐵)''''𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥)) |
18 | 16, 17 | sylbir 234 |
. . 3
⊢ ((𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})) → ((𝐹 ↾ 𝐵)''''𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥)) |
19 | 15, 18 | syl 17 |
. 2
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)''''𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥)) |
20 | | vex 3426 |
. . . . . 6
⊢ 𝑥 ∈ V |
21 | 20 | brresi 5889 |
. . . . 5
⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴𝐹𝑥)) |
22 | 21 | baib 535 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
23 | 22 | iotabidv 6402 |
. . 3
⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
24 | 23 | adantl 481 |
. 2
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
25 | | dfatafv2iota 44589 |
. . . 4
⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) |
26 | 25 | eqcomd 2744 |
. . 3
⊢ (𝐹 defAt 𝐴 → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴)) |
27 | 26 | adantr 480 |
. 2
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴)) |
28 | 19, 24, 27 | 3eqtrd 2782 |
1
⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)''''𝐴) = (𝐹''''𝐴)) |