Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2res Structured version   Visualization version   GIF version

Theorem afv2res 47268
Description: The value of a restricted function for an argument at which the function is defined. Analog to fvres 6895. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
afv2res ((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (𝐹''''𝐴))

Proof of Theorem afv2res
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-dfat 47148 . . . . 5 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 elin 3942 . . . . . . . . . 10 (𝐴 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝐴𝐵𝐴 ∈ dom 𝐹))
32biimpri 228 . . . . . . . . 9 ((𝐴𝐵𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐵 ∩ dom 𝐹))
4 dmres 5999 . . . . . . . . 9 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
53, 4eleqtrrdi 2845 . . . . . . . 8 ((𝐴𝐵𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom (𝐹𝐵))
65ex 412 . . . . . . 7 (𝐴𝐵 → (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹𝐵)))
7 snssi 4784 . . . . . . . . . . 11 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
87resabs1d 5995 . . . . . . . . . 10 (𝐴𝐵 → ((𝐹𝐵) ↾ {𝐴}) = (𝐹 ↾ {𝐴}))
98eqcomd 2741 . . . . . . . . 9 (𝐴𝐵 → (𝐹 ↾ {𝐴}) = ((𝐹𝐵) ↾ {𝐴}))
109funeqd 6558 . . . . . . . 8 (𝐴𝐵 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun ((𝐹𝐵) ↾ {𝐴})))
1110biimpd 229 . . . . . . 7 (𝐴𝐵 → (Fun (𝐹 ↾ {𝐴}) → Fun ((𝐹𝐵) ↾ {𝐴})))
126, 11anim12d 609 . . . . . 6 (𝐴𝐵 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
1312com12 32 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐵 → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
141, 13sylbi 217 . . . 4 (𝐹 defAt 𝐴 → (𝐴𝐵 → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
1514imp 406 . . 3 ((𝐹 defAt 𝐴𝐴𝐵) → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})))
16 df-dfat 47148 . . . 4 ((𝐹𝐵) defAt 𝐴 ↔ (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})))
17 dfatafv2iota 47239 . . . 4 ((𝐹𝐵) defAt 𝐴 → ((𝐹𝐵)''''𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥))
1816, 17sylbir 235 . . 3 ((𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})) → ((𝐹𝐵)''''𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥))
1915, 18syl 17 . 2 ((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥))
20 vex 3463 . . . . . 6 𝑥 ∈ V
2120brresi 5975 . . . . 5 (𝐴(𝐹𝐵)𝑥 ↔ (𝐴𝐵𝐴𝐹𝑥))
2221baib 535 . . . 4 (𝐴𝐵 → (𝐴(𝐹𝐵)𝑥𝐴𝐹𝑥))
2322iotabidv 6515 . . 3 (𝐴𝐵 → (℩𝑥𝐴(𝐹𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥))
2423adantl 481 . 2 ((𝐹 defAt 𝐴𝐴𝐵) → (℩𝑥𝐴(𝐹𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥))
25 dfatafv2iota 47239 . . . 4 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
2625eqcomd 2741 . . 3 (𝐹 defAt 𝐴 → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴))
2726adantr 480 . 2 ((𝐹 defAt 𝐴𝐴𝐵) → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴))
2819, 24, 273eqtrd 2774 1 ((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (𝐹''''𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3925  {csn 4601   class class class wbr 5119  dom cdm 5654  cres 5656  cio 6482  Fun wfun 6525   defAt wdfat 47145  ''''cafv2 47237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-iota 6484  df-fun 6533  df-dfat 47148  df-afv2 47238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator