Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2res Structured version   Visualization version   GIF version

Theorem afv2res 45461
Description: The value of a restricted function for an argument at which the function is defined. Analog to fvres 6861. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
afv2res ((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (𝐹''''𝐴))

Proof of Theorem afv2res
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-dfat 45341 . . . . 5 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 elin 3926 . . . . . . . . . 10 (𝐴 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝐴𝐵𝐴 ∈ dom 𝐹))
32biimpri 227 . . . . . . . . 9 ((𝐴𝐵𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐵 ∩ dom 𝐹))
4 dmres 5959 . . . . . . . . 9 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
53, 4eleqtrrdi 2849 . . . . . . . 8 ((𝐴𝐵𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom (𝐹𝐵))
65ex 413 . . . . . . 7 (𝐴𝐵 → (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹𝐵)))
7 snssi 4768 . . . . . . . . . . 11 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
87resabs1d 5968 . . . . . . . . . 10 (𝐴𝐵 → ((𝐹𝐵) ↾ {𝐴}) = (𝐹 ↾ {𝐴}))
98eqcomd 2742 . . . . . . . . 9 (𝐴𝐵 → (𝐹 ↾ {𝐴}) = ((𝐹𝐵) ↾ {𝐴}))
109funeqd 6523 . . . . . . . 8 (𝐴𝐵 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun ((𝐹𝐵) ↾ {𝐴})))
1110biimpd 228 . . . . . . 7 (𝐴𝐵 → (Fun (𝐹 ↾ {𝐴}) → Fun ((𝐹𝐵) ↾ {𝐴})))
126, 11anim12d 609 . . . . . 6 (𝐴𝐵 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
1312com12 32 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐵 → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
141, 13sylbi 216 . . . 4 (𝐹 defAt 𝐴 → (𝐴𝐵 → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
1514imp 407 . . 3 ((𝐹 defAt 𝐴𝐴𝐵) → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})))
16 df-dfat 45341 . . . 4 ((𝐹𝐵) defAt 𝐴 ↔ (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})))
17 dfatafv2iota 45432 . . . 4 ((𝐹𝐵) defAt 𝐴 → ((𝐹𝐵)''''𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥))
1816, 17sylbir 234 . . 3 ((𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})) → ((𝐹𝐵)''''𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥))
1915, 18syl 17 . 2 ((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥))
20 vex 3449 . . . . . 6 𝑥 ∈ V
2120brresi 5946 . . . . 5 (𝐴(𝐹𝐵)𝑥 ↔ (𝐴𝐵𝐴𝐹𝑥))
2221baib 536 . . . 4 (𝐴𝐵 → (𝐴(𝐹𝐵)𝑥𝐴𝐹𝑥))
2322iotabidv 6480 . . 3 (𝐴𝐵 → (℩𝑥𝐴(𝐹𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥))
2423adantl 482 . 2 ((𝐹 defAt 𝐴𝐴𝐵) → (℩𝑥𝐴(𝐹𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥))
25 dfatafv2iota 45432 . . . 4 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥))
2625eqcomd 2742 . . 3 (𝐹 defAt 𝐴 → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴))
2726adantr 481 . 2 ((𝐹 defAt 𝐴𝐴𝐵) → (℩𝑥𝐴𝐹𝑥) = (𝐹''''𝐴))
2819, 24, 273eqtrd 2780 1 ((𝐹 defAt 𝐴𝐴𝐵) → ((𝐹𝐵)''''𝐴) = (𝐹''''𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cin 3909  {csn 4586   class class class wbr 5105  dom cdm 5633  cres 5635  cio 6446  Fun wfun 6490   defAt wdfat 45338  ''''cafv2 45430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-res 5645  df-iota 6448  df-fun 6498  df-dfat 45341  df-afv2 45431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator