Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnambfre Structured version   Visualization version   GIF version

Theorem cnambfre 35562
Description: A real-valued, a.e. continuous function is measurable. (Contributed by Brendan Leahy, 4-Apr-2018.)
Assertion
Ref Expression
cnambfre ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn)

Proof of Theorem cnambfre
Dummy variables 𝑓 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
21feqmptd 6780 . . . . . . . . 9 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
32cnveqd 5744 . . . . . . . 8 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
43imaeq1d 5928 . . . . . . 7 (𝐹:𝐴⟶ℝ → (𝐹𝑏) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏))
54ad2antrr 726 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏))
6 exmid 895 . . . . . . . . . . 11 (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∨ ¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))
76biantrur 534 . . . . . . . . . 10 ((𝐹𝑥) ∈ 𝑏 ↔ ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∨ ¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏))
8 andir 1009 . . . . . . . . . 10 (((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∨ ¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏) ↔ ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)))
97, 8bitri 278 . . . . . . . . 9 ((𝐹𝑥) ∈ 𝑏 ↔ ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)))
10 retopbas 23658 . . . . . . . . . . . . . . . . . 18 ran (,) ∈ TopBases
11 bastg 21863 . . . . . . . . . . . . . . . . . 18 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
1210, 11ax-mp 5 . . . . . . . . . . . . . . . . 17 ran (,) ⊆ (topGen‘ran (,))
1312sseli 3896 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ran (,) → 𝑏 ∈ (topGen‘ran (,)))
1413ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → 𝑏 ∈ (topGen‘ran (,)))
15 cnpimaex 22153 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ 𝑏 ∈ (topGen‘ran (,)) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
16153com12 1125 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ (topGen‘ran (,)) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
17163expa 1120 . . . . . . . . . . . . . . 15 (((𝑏 ∈ (topGen‘ran (,)) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
1814, 17sylanl1 680 . . . . . . . . . . . . . 14 ((((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
1918ex 416 . . . . . . . . . . . . 13 (((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) → ((𝐹𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
20 simprrr 782 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → (𝐹𝑦) ⊆ 𝑏)
21 ffn 6545 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴)
2221adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 Fn 𝐴)
23 restsspw 16936 . . . . . . . . . . . . . . . . . . . 20 ((topGen‘ran (,)) ↾t 𝐴) ⊆ 𝒫 𝐴
2423sseli 3896 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → 𝑦 ∈ 𝒫 𝐴)
2524elpwid 4524 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → 𝑦𝐴)
26 simpl 486 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → 𝑥𝑦)
27 fnfvima 7049 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴𝑦𝐴𝑥𝑦) → (𝐹𝑥) ∈ (𝐹𝑦))
2822, 25, 26, 27syl3an 1162 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) → (𝐹𝑥) ∈ (𝐹𝑦))
29283expb 1122 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → (𝐹𝑥) ∈ (𝐹𝑦))
3020, 29sseldd 3902 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → (𝐹𝑥) ∈ 𝑏)
3130rexlimdvaa 3204 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → (𝐹𝑥) ∈ 𝑏))
3231ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) → (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → (𝐹𝑥) ∈ 𝑏))
3319, 32impbid 215 . . . . . . . . . . . 12 (((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) → ((𝐹𝑥) ∈ 𝑏 ↔ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
3433pm5.32da 582 . . . . . . . . . . 11 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ↔ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))))
35 r19.42v 3263 . . . . . . . . . . 11 (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ↔ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
3634, 35bitr4di 292 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ↔ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))))
3736orbi1d 917 . . . . . . . . 9 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → (((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)) ↔ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))))
389, 37syl5bb 286 . . . . . . . 8 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ 𝑏 ↔ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))))
3938rabbidva 3388 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝑏} = {𝑥𝐴 ∣ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))})
40 eqid 2737 . . . . . . . 8 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
4140mptpreima 6101 . . . . . . 7 ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝑏}
42 unrab 4220 . . . . . . 7 ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = {𝑥𝐴 ∣ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))}
4339, 41, 423eqtr4g 2803 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏) = ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}))
445, 43eqtrd 2777 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) = ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}))
45443adantl3 1170 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) = ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}))
46 incom 4115 . . . . . . . . 9 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∩ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) = ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)})
47 dfin4 4182 . . . . . . . . 9 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∩ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) = ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}))
48 inrab 4221 . . . . . . . . . . . 12 ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = {𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
4948a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = {𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))})
5049iuneq2i 4925 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
51 iunin2 4979 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)})
52 iunrab 4961 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} = {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
5350, 51, 523eqtr3i 2773 . . . . . . . . 9 ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
5446, 47, 533eqtr3i 2773 . . . . . . . 8 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
55 eqeq2 2749 . . . . . . . . . . . 12 (𝑦 = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) → ({𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = 𝑦 ↔ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅)))
56 eqeq2 2749 . . . . . . . . . . . 12 (∅ = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) → ({𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅ ↔ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅)))
57 simprrl 781 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → 𝑥𝑦)
5825adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → 𝑦𝐴)
5958sselda 3901 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ 𝑥𝑦) → 𝑥𝐴)
60 pm3.22 463 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ⊆ 𝑏𝑥𝑦) → (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
6160adantll 714 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ 𝑥𝑦) → (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
6259, 61jca 515 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ 𝑥𝑦) → (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
6357, 62impbida 801 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → ((𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ↔ 𝑥𝑦))
6463abbidv 2807 . . . . . . . . . . . . 13 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → {𝑥 ∣ (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} = {𝑥𝑥𝑦})
65 df-rab 3070 . . . . . . . . . . . . 13 {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
66 cvjust 2731 . . . . . . . . . . . . 13 𝑦 = {𝑥𝑥𝑦}
6764, 65, 663eqtr4g 2803 . . . . . . . . . . . 12 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = 𝑦)
68 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → (𝐹𝑦) ⊆ 𝑏)
6968con3i 157 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑦) ⊆ 𝑏 → ¬ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
7069ralrimivw 3106 . . . . . . . . . . . . . 14 (¬ (𝐹𝑦) ⊆ 𝑏 → ∀𝑥𝐴 ¬ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
71 rabeq0 4299 . . . . . . . . . . . . . 14 ({𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
7270, 71sylibr 237 . . . . . . . . . . . . 13 (¬ (𝐹𝑦) ⊆ 𝑏 → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅)
7372adantl 485 . . . . . . . . . . . 12 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ ¬ (𝐹𝑦) ⊆ 𝑏) → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅)
7455, 56, 67, 73ifbothda 4477 . . . . . . . . . . 11 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅))
7574iuneq2i 4925 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅)
76 retop 23659 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
77 resttop 22057 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ∈ dom vol) → ((topGen‘ran (,)) ↾t 𝐴) ∈ Top)
7876, 77mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → ((topGen‘ran (,)) ↾t 𝐴) ∈ Top)
79 0opn 21801 . . . . . . . . . . . . . . 15 (((topGen‘ran (,)) ↾t 𝐴) ∈ Top → ∅ ∈ ((topGen‘ran (,)) ↾t 𝐴))
8078, 79syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → ∅ ∈ ((topGen‘ran (,)) ↾t 𝐴))
81 ifcl 4484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ ∅ ∈ ((topGen‘ran (,)) ↾t 𝐴)) → if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8281ancoms 462 . . . . . . . . . . . . . 14 ((∅ ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)) → if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8380, 82sylan 583 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)) → if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8483ralrimiva 3105 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → ∀𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
85 iunopn 21795 . . . . . . . . . . . 12 ((((topGen‘ran (,)) ↾t 𝐴) ∈ Top ∧ ∀𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8678, 84, 85syl2anc 587 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
87 eqid 2737 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)
8887subopnmbl 24501 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ dom vol)
8986, 88mpdan 687 . . . . . . . . . 10 (𝐴 ∈ dom vol → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ dom vol)
9075, 89eqeltrid 2842 . . . . . . . . 9 (𝐴 ∈ dom vol → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∈ dom vol)
91 difss 4046 . . . . . . . . . . . 12 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}
92 ssrab2 3993 . . . . . . . . . . . . . 14 {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴
9392rgenw 3073 . . . . . . . . . . . . 13 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴
94 iunss 4954 . . . . . . . . . . . . 13 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴 ↔ ∀𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴)
9593, 94mpbir 234 . . . . . . . . . . . 12 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴
9691, 95sstri 3910 . . . . . . . . . . 11 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ 𝐴
97 mblss 24428 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
9896, 97sstrid 3912 . . . . . . . . . 10 (𝐴 ∈ dom vol → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ ℝ)
99 ssdif 4054 . . . . . . . . . . . . . 14 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴 → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}))
10095, 99ax-mp 5 . . . . . . . . . . . . 13 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})
101 rele 5697 . . . . . . . . . . . . . . . . . . . 20 Rel E
102 elrelimasn 5953 . . . . . . . . . . . . . . . . . . . 20 (Rel E → (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}) ↔ 𝐹 E ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)))
103101, 102ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}) ↔ 𝐹 E ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))
104 fvex 6730 . . . . . . . . . . . . . . . . . . . 20 ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ V
105104epeli 5462 . . . . . . . . . . . . . . . . . . 19 (𝐹 E ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))
106103, 105bitr2i 279 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))
107106anbi2i 626 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹})))
108 ovex 7246 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ↑m 𝐴) ∈ V
109108rabex 5225 . . . . . . . . . . . . . . . . . . . 20 {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))} ∈ V
110 eqid 2737 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}) = (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))})
111109, 110fnmpti 6521 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}) Fn 𝐴
112 retopon 23661 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
113 resttopon 22058 . . . . . . . . . . . . . . . . . . . . . 22 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) → ((topGen‘ran (,)) ↾t 𝐴) ∈ (TopOn‘𝐴))
114112, 97, 113sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ dom vol → ((topGen‘ran (,)) ↾t 𝐴) ∈ (TopOn‘𝐴))
115 cnpfval 22131 . . . . . . . . . . . . . . . . . . . . 21 ((((topGen‘ran (,)) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) → (((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) = (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}))
116114, 112, 115sylancl 589 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ dom vol → (((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) = (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}))
117116fneq1d 6472 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ dom vol → ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) Fn 𝐴 ↔ (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}) Fn 𝐴))
118111, 117mpbiri 261 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ dom vol → (((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) Fn 𝐴)
119 elpreima 6878 . . . . . . . . . . . . . . . . . 18 ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) Fn 𝐴 → (𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))))
120118, 119syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → (𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))))
121107, 120bitr4id 293 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → ((𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ↔ 𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))))
122121abbidv 2807 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom vol → {𝑥 ∣ (𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))} = {𝑥𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))})
123 df-rab 3070 . . . . . . . . . . . . . . 15 {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} = {𝑥 ∣ (𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))}
124 imaco 6115 . . . . . . . . . . . . . . . 16 (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}) = ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))
125 abid2 2879 . . . . . . . . . . . . . . . 16 {𝑥𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))} = ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))
126124, 125eqtr4i 2768 . . . . . . . . . . . . . . 15 (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}) = {𝑥𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))}
127122, 123, 1263eqtr4g 2803 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} = (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))
128127difeq2d 4037 . . . . . . . . . . . . 13 (𝐴 ∈ dom vol → (𝐴 ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) = (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
129100, 128sseqtrid 3953 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
130 difss 4046 . . . . . . . . . . . . 13 (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ 𝐴
131130, 97sstrid 3912 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ)
132129, 131jca 515 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ))
133 ovolssnul 24384 . . . . . . . . . . . 12 ((( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0)
1341333expa 1120 . . . . . . . . . . 11 (((( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ) ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0)
135132, 134sylan 583 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0)
136 nulmbl 24432 . . . . . . . . . 10 ((( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ ℝ ∧ (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ∈ dom vol)
13798, 135, 136syl2an2r 685 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ∈ dom vol)
138 difmbl 24440 . . . . . . . . 9 (( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∈ dom vol ∧ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ∈ dom vol) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) ∈ dom vol)
13990, 137, 138syl2an2r 685 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) ∈ dom vol)
14054, 139eqeltrrid 2843 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∈ dom vol)
141 ssrab2 3993 . . . . . . . . 9 {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ 𝐴
142141, 97sstrid 3912 . . . . . . . 8 (𝐴 ∈ dom vol → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ ℝ)
143124eleq2i 2829 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}) ↔ 𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})))
144 ibar 532 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))))
145106, 144bitr2id 287 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹})) ↔ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)))
146120, 145sylan9bb 513 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})) ↔ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)))
147143, 146bitr2id 287 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
148147notbid 321 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
149148biimpd 232 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) → ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
150149adantrd 495 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → ((¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) → ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
151150ss2rabdv 3989 . . . . . . . . . . 11 (𝐴 ∈ dom vol → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})})
152 dfdif2 3875 . . . . . . . . . . 11 (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})}
153151, 152sseqtrrdi 3952 . . . . . . . . . 10 (𝐴 ∈ dom vol → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
154153, 131jca 515 . . . . . . . . 9 (𝐴 ∈ dom vol → ({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ))
155 ovolssnul 24384 . . . . . . . . . 10 (({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0)
1561553expa 1120 . . . . . . . . 9 ((({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ) ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0)
157154, 156sylan 583 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0)
158 nulmbl 24432 . . . . . . . 8 (({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ ℝ ∧ (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0) → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ∈ dom vol)
159142, 157, 158syl2an2r 685 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ∈ dom vol)
160 unmbl 24434 . . . . . . 7 (({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∈ dom vol ∧ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ∈ dom vol) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
161140, 159, 160syl2anc 587 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
1621613adant1 1132 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
163162adantr 484 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) ∧ 𝑏 ∈ ran (,)) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
16445, 163eqeltrd 2838 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) ∈ dom vol)
165164ralrimiva 3105 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ∀𝑏 ∈ ran (,)(𝐹𝑏) ∈ dom vol)
166 ismbf 24525 . . 3 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑏 ∈ ran (,)(𝐹𝑏) ∈ dom vol))
1671663ad2ant1 1135 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (𝐹 ∈ MblFn ↔ ∀𝑏 ∈ ran (,)(𝐹𝑏) ∈ dom vol))
168165, 167mpbird 260 1 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  {cab 2714  wral 3061  wrex 3062  {crab 3065  cdif 3863  cun 3864  cin 3865  wss 3866  c0 4237  ifcif 4439  𝒫 cpw 4513  {csn 4541   ciun 4904   class class class wbr 5053  cmpt 5135   E cep 5459  ccnv 5550  dom cdm 5551  ran crn 5552  cima 5554  ccom 5555  Rel wrel 5556   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  cr 10728  0cc0 10729  (,)cioo 12935  t crest 16925  topGenctg 16942  Topctop 21790  TopOnctopon 21807  TopBasesctb 21842   CnP ccnp 22122  vol*covol 24359  volcvol 24360  MblFncmbf 24511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-rest 16927  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-bases 21843  df-cnp 22125  df-cmp 22284  df-ovol 24361  df-vol 24362  df-mbf 24516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator