Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnambfre Structured version   Visualization version   GIF version

Theorem cnambfre 37658
Description: A real-valued, a.e. continuous function is measurable. (Contributed by Brendan Leahy, 4-Apr-2018.)
Assertion
Ref Expression
cnambfre ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn)

Proof of Theorem cnambfre
Dummy variables 𝑓 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
21feqmptd 6891 . . . . . . . . 9 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
32cnveqd 5818 . . . . . . . 8 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
43imaeq1d 6010 . . . . . . 7 (𝐹:𝐴⟶ℝ → (𝐹𝑏) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏))
54ad2antrr 726 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏))
6 exmid 894 . . . . . . . . . . 11 (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∨ ¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))
76biantrur 530 . . . . . . . . . 10 ((𝐹𝑥) ∈ 𝑏 ↔ ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∨ ¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏))
8 andir 1010 . . . . . . . . . 10 (((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∨ ¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏) ↔ ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)))
97, 8bitri 275 . . . . . . . . 9 ((𝐹𝑥) ∈ 𝑏 ↔ ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)))
10 retopbas 24646 . . . . . . . . . . . . . . . . . 18 ran (,) ∈ TopBases
11 bastg 22851 . . . . . . . . . . . . . . . . . 18 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
1210, 11ax-mp 5 . . . . . . . . . . . . . . . . 17 ran (,) ⊆ (topGen‘ran (,))
1312sseli 3931 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ran (,) → 𝑏 ∈ (topGen‘ran (,)))
1413ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → 𝑏 ∈ (topGen‘ran (,)))
15 cnpimaex 23141 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ 𝑏 ∈ (topGen‘ran (,)) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
16153com12 1123 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ (topGen‘ran (,)) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
17163expa 1118 . . . . . . . . . . . . . . 15 (((𝑏 ∈ (topGen‘ran (,)) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
1814, 17sylanl1 680 . . . . . . . . . . . . . 14 ((((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ∧ (𝐹𝑥) ∈ 𝑏) → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
1918ex 412 . . . . . . . . . . . . 13 (((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) → ((𝐹𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
20 simprrr 781 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → (𝐹𝑦) ⊆ 𝑏)
21 ffn 6652 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴)
2221adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 Fn 𝐴)
23 restsspw 17335 . . . . . . . . . . . . . . . . . . . 20 ((topGen‘ran (,)) ↾t 𝐴) ⊆ 𝒫 𝐴
2423sseli 3931 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → 𝑦 ∈ 𝒫 𝐴)
2524elpwid 4560 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → 𝑦𝐴)
26 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → 𝑥𝑦)
27 fnfvima 7169 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴𝑦𝐴𝑥𝑦) → (𝐹𝑥) ∈ (𝐹𝑦))
2822, 25, 26, 27syl3an 1160 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) → (𝐹𝑥) ∈ (𝐹𝑦))
29283expb 1120 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → (𝐹𝑥) ∈ (𝐹𝑦))
3020, 29sseldd 3936 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → (𝐹𝑥) ∈ 𝑏)
3130rexlimdvaa 3131 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → (𝐹𝑥) ∈ 𝑏))
3231ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) → (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → (𝐹𝑥) ∈ 𝑏))
3319, 32impbid 212 . . . . . . . . . . . 12 (((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) ∧ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) → ((𝐹𝑥) ∈ 𝑏 ↔ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
3433pm5.32da 579 . . . . . . . . . . 11 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ↔ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))))
35 r19.42v 3161 . . . . . . . . . . 11 (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ↔ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
3634, 35bitr4di 289 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → ((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ↔ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))))
3736orbi1d 916 . . . . . . . . 9 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → (((𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)) ↔ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))))
389, 37bitrid 283 . . . . . . . 8 ((((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ 𝑏 ↔ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))))
3938rabbidva 3401 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝑏} = {𝑥𝐴 ∣ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))})
40 eqid 2729 . . . . . . . 8 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
4140mptpreima 6187 . . . . . . 7 ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝑏}
42 unrab 4266 . . . . . . 7 ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = {𝑥𝐴 ∣ (∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ∨ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏))}
4339, 41, 423eqtr4g 2789 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → ((𝑥𝐴 ↦ (𝐹𝑥)) “ 𝑏) = ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}))
445, 43eqtrd 2764 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) = ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}))
45443adantl3 1169 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) = ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}))
46 incom 4160 . . . . . . . . 9 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∩ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) = ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)})
47 dfin4 4229 . . . . . . . . 9 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∩ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) = ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}))
48 inrab 4267 . . . . . . . . . . . 12 ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = {𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
4948a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = {𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))})
5049iuneq2i 4963 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
51 iunin2 5020 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)})
52 iunrab 5001 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} = {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
5350, 51, 523eqtr3i 2760 . . . . . . . . 9 ({𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} ∩ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}) = {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
5446, 47, 533eqtr3i 2760 . . . . . . . 8 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
55 eqeq2 2741 . . . . . . . . . . . 12 (𝑦 = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) → ({𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = 𝑦 ↔ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅)))
56 eqeq2 2741 . . . . . . . . . . . 12 (∅ = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) → ({𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅ ↔ {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅)))
57 simprrl 780 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))) → 𝑥𝑦)
5825adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → 𝑦𝐴)
5958sselda 3935 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ 𝑥𝑦) → 𝑥𝐴)
60 pm3.22 459 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ⊆ 𝑏𝑥𝑦) → (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
6160adantll 714 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ 𝑥𝑦) → (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
6259, 61jca 511 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) ∧ 𝑥𝑦) → (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)))
6357, 62impbida 800 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → ((𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)) ↔ 𝑥𝑦))
6463abbidv 2795 . . . . . . . . . . . . 13 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → {𝑥 ∣ (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} = {𝑥𝑥𝑦})
65 df-rab 3395 . . . . . . . . . . . . 13 {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))}
66 cvjust 2723 . . . . . . . . . . . . 13 𝑦 = {𝑥𝑥𝑦}
6764, 65, 663eqtr4g 2789 . . . . . . . . . . . 12 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ (𝐹𝑦) ⊆ 𝑏) → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = 𝑦)
68 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏) → (𝐹𝑦) ⊆ 𝑏)
6968con3i 154 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑦) ⊆ 𝑏 → ¬ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
7069ralrimivw 3125 . . . . . . . . . . . . . 14 (¬ (𝐹𝑦) ⊆ 𝑏 → ∀𝑥𝐴 ¬ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
71 rabeq0 4339 . . . . . . . . . . . . . 14 ({𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))
7270, 71sylibr 234 . . . . . . . . . . . . 13 (¬ (𝐹𝑦) ⊆ 𝑏 → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅)
7372adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ ¬ (𝐹𝑦) ⊆ 𝑏) → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = ∅)
7455, 56, 67, 73ifbothda 4515 . . . . . . . . . . 11 (𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) → {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅))
7574iuneq2i 4963 . . . . . . . . . 10 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} = 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅)
76 retop 24647 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
77 resttop 23045 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ∈ dom vol) → ((topGen‘ran (,)) ↾t 𝐴) ∈ Top)
7876, 77mpan 690 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → ((topGen‘ran (,)) ↾t 𝐴) ∈ Top)
79 0opn 22789 . . . . . . . . . . . . . . 15 (((topGen‘ran (,)) ↾t 𝐴) ∈ Top → ∅ ∈ ((topGen‘ran (,)) ↾t 𝐴))
8078, 79syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → ∅ ∈ ((topGen‘ran (,)) ↾t 𝐴))
81 ifcl 4522 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ ∅ ∈ ((topGen‘ran (,)) ↾t 𝐴)) → if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8281ancoms 458 . . . . . . . . . . . . . 14 ((∅ ∈ ((topGen‘ran (,)) ↾t 𝐴) ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)) → if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8380, 82sylan 580 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)) → if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8483ralrimiva 3121 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → ∀𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
85 iunopn 22783 . . . . . . . . . . . 12 ((((topGen‘ran (,)) ↾t 𝐴) ∈ Top ∧ ∀𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
8678, 84, 85syl2anc 584 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴))
87 eqid 2729 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)
8887subopnmbl 25503 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ dom vol)
8986, 88mpdan 687 . . . . . . . . . 10 (𝐴 ∈ dom vol → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)if((𝐹𝑦) ⊆ 𝑏, 𝑦, ∅) ∈ dom vol)
9075, 89eqeltrid 2832 . . . . . . . . 9 (𝐴 ∈ dom vol → 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∈ dom vol)
91 difss 4087 . . . . . . . . . . . 12 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)}
92 ssrab2 4031 . . . . . . . . . . . . . 14 {𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴
9392rgenw 3048 . . . . . . . . . . . . 13 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴
94 iunss 4994 . . . . . . . . . . . . 13 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴 ↔ ∀𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴)
9593, 94mpbir 231 . . . . . . . . . . . 12 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴
9691, 95sstri 3945 . . . . . . . . . . 11 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ 𝐴
97 mblss 25430 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
9896, 97sstrid 3947 . . . . . . . . . 10 (𝐴 ∈ dom vol → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ ℝ)
99 ssdif 4095 . . . . . . . . . . . . . 14 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ⊆ 𝐴 → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}))
10095, 99ax-mp 5 . . . . . . . . . . . . 13 ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})
101 rele 5770 . . . . . . . . . . . . . . . . . . . 20 Rel E
102 elrelimasn 6037 . . . . . . . . . . . . . . . . . . . 20 (Rel E → (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}) ↔ 𝐹 E ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)))
103101, 102ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}) ↔ 𝐹 E ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))
104 fvex 6835 . . . . . . . . . . . . . . . . . . . 20 ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ V
105104epeli 5521 . . . . . . . . . . . . . . . . . . 19 (𝐹 E ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))
106103, 105bitr2i 276 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))
107106anbi2i 623 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹})))
108 ovex 7382 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ↑m 𝐴) ∈ V
109108rabex 5278 . . . . . . . . . . . . . . . . . . . 20 {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))} ∈ V
110 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}) = (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))})
111109, 110fnmpti 6625 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}) Fn 𝐴
112 retopon 24649 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
113 resttopon 23046 . . . . . . . . . . . . . . . . . . . . . 22 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) → ((topGen‘ran (,)) ↾t 𝐴) ∈ (TopOn‘𝐴))
114112, 97, 113sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ dom vol → ((topGen‘ran (,)) ↾t 𝐴) ∈ (TopOn‘𝐴))
115 cnpfval 23119 . . . . . . . . . . . . . . . . . . . . 21 ((((topGen‘ran (,)) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) → (((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) = (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}))
116114, 112, 115sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ dom vol → (((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) = (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}))
117116fneq1d 6575 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ dom vol → ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) Fn 𝐴 ↔ (𝑥𝐴 ↦ {𝑓 ∈ (ℝ ↑m 𝐴) ∣ ∀𝑏 ∈ (topGen‘ran (,))((𝑓𝑥) ∈ 𝑏 → ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝑥𝑦 ∧ (𝑓𝑦) ⊆ 𝑏))}) Fn 𝐴))
118111, 117mpbiri 258 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ dom vol → (((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) Fn 𝐴)
119 elpreima 6992 . . . . . . . . . . . . . . . . . 18 ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) Fn 𝐴 → (𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))))
120118, 119syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → (𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))))
121107, 120bitr4id 290 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → ((𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)) ↔ 𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))))
122121abbidv 2795 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom vol → {𝑥 ∣ (𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))} = {𝑥𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))})
123 df-rab 3395 . . . . . . . . . . . . . . 15 {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} = {𝑥 ∣ (𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥))}
124 imaco 6200 . . . . . . . . . . . . . . . 16 (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}) = ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))
125 abid2 2865 . . . . . . . . . . . . . . . 16 {𝑥𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))} = ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))
126124, 125eqtr4i 2755 . . . . . . . . . . . . . . 15 (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}) = {𝑥𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹}))}
127122, 123, 1263eqtr4g 2789 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)} = (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))
128127difeq2d 4077 . . . . . . . . . . . . 13 (𝐴 ∈ dom vol → (𝐴 ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) = (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
129100, 128sseqtrid 3978 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
130 difss 4087 . . . . . . . . . . . . 13 (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ 𝐴
131130, 97sstrid 3947 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ)
132129, 131jca 511 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ))
133 ovolssnul 25386 . . . . . . . . . . . 12 ((( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0)
1341333expa 1118 . . . . . . . . . . 11 (((( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ) ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0)
135132, 134sylan 580 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0)
136 nulmbl 25434 . . . . . . . . . 10 ((( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ⊆ ℝ ∧ (vol*‘( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) = 0) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ∈ dom vol)
13798, 135, 136syl2an2r 685 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ∈ dom vol)
138 difmbl 25442 . . . . . . . . 9 (( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∈ dom vol ∧ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)}) ∈ dom vol) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) ∈ dom vol)
13990, 137, 138syl2an2r 685 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ ( 𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴){𝑥𝐴 ∣ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏)} ∖ {𝑥𝐴𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)})) ∈ dom vol)
14054, 139eqeltrrid 2833 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → {𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∈ dom vol)
141 ssrab2 4031 . . . . . . . . 9 {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ 𝐴
142141, 97sstrid 3947 . . . . . . . 8 (𝐴 ∈ dom vol → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ ℝ)
143124eleq2i 2820 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}) ↔ 𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})))
144 ibar 528 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}) ↔ (𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹}))))
145106, 144bitr2id 284 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑥𝐴 ∧ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∈ ( E “ {𝐹})) ↔ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)))
146120, 145sylan9bb 509 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (𝑥 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) “ ( E “ {𝐹})) ↔ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥)))
147143, 146bitr2id 284 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
148147notbid 318 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ↔ ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
149148biimpd 229 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) → ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
150149adantrd 491 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → ((¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏) → ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
151150ss2rabdv 4027 . . . . . . . . . . 11 (𝐴 ∈ dom vol → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})})
152 dfdif2 3912 . . . . . . . . . . 11 (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})}
153151, 152sseqtrrdi 3977 . . . . . . . . . 10 (𝐴 ∈ dom vol → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})))
154153, 131jca 511 . . . . . . . . 9 (𝐴 ∈ dom vol → ({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ))
155 ovolssnul 25386 . . . . . . . . . 10 (({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0)
1561553expa 1118 . . . . . . . . 9 ((({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ∧ (𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹})) ⊆ ℝ) ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0)
157154, 156sylan 580 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0)
158 nulmbl 25434 . . . . . . . 8 (({𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ⊆ ℝ ∧ (vol*‘{𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) = 0) → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ∈ dom vol)
159142, 157, 158syl2an2r 685 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ∈ dom vol)
160 unmbl 25436 . . . . . . 7 (({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∈ dom vol ∧ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)} ∈ dom vol) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
161140, 159, 160syl2anc 584 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
1621613adant1 1130 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
163162adantr 480 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) ∧ 𝑏 ∈ ran (,)) → ({𝑥𝐴 ∣ ∃𝑦 ∈ ((topGen‘ran (,)) ↾t 𝐴)(𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝑥𝑦 ∧ (𝐹𝑦) ⊆ 𝑏))} ∪ {𝑥𝐴 ∣ (¬ 𝐹 ∈ ((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,)))‘𝑥) ∧ (𝐹𝑥) ∈ 𝑏)}) ∈ dom vol)
16445, 163eqeltrd 2828 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) ∧ 𝑏 ∈ ran (,)) → (𝐹𝑏) ∈ dom vol)
165164ralrimiva 3121 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → ∀𝑏 ∈ ran (,)(𝐹𝑏) ∈ dom vol)
166 ismbf 25527 . . 3 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑏 ∈ ran (,)(𝐹𝑏) ∈ dom vol))
1671663ad2ant1 1133 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → (𝐹 ∈ MblFn ↔ ∀𝑏 ∈ ran (,)(𝐹𝑏) ∈ dom vol))
168165, 167mpbird 257 1 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3394  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  ifcif 4476  𝒫 cpw 4551  {csn 4577   ciun 4941   class class class wbr 5092  cmpt 5173   E cep 5518  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  ccom 5623  Rel wrel 5624   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  cr 11008  0cc0 11009  (,)cioo 13248  t crest 17324  topGenctg 17341  Topctop 22778  TopOnctopon 22795  TopBasesctb 22830   CnP ccnp 23110  vol*covol 25361  volcvol 25362  MblFncmbf 25513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cnp 23113  df-cmp 23272  df-ovol 25363  df-vol 25364  df-mbf 25518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator