| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdifOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of nfdif 4128 as of 14-May-2025. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
| nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfdifOLD | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3959 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} | |
| 2 | nfdif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 2 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 4 | 3 | nfn 1856 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
| 5 | nfdif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | nfrabw 3474 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} |
| 7 | 1, 6 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2107 Ⅎwnfc 2889 {crab 3435 ∖ cdif 3947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rab 3436 df-dif 3953 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |