MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdifOLD Structured version   Visualization version   GIF version

Theorem nfdifOLD 4129
Description: Obsolete version of nfdif 4128 as of 14-May-2025. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdifOLD 𝑥(𝐴𝐵)

Proof of Theorem nfdifOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3959 . 2 (𝐴𝐵) = {𝑦𝐴 ∣ ¬ 𝑦𝐵}
2 nfdif.2 . . . . 5 𝑥𝐵
32nfcri 2896 . . . 4 𝑥 𝑦𝐵
43nfn 1856 . . 3 𝑥 ¬ 𝑦𝐵
5 nfdif.1 . . 3 𝑥𝐴
64, 5nfrabw 3474 . 2 𝑥{𝑦𝐴 ∣ ¬ 𝑦𝐵}
71, 6nfcxfr 2902 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2107  wnfc 2889  {crab 3435  cdif 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-rab 3436  df-dif 3953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator