![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdifOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfdif 4152 as of 14-May-2025. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdifOLD | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3985 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} | |
2 | nfdif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | 2 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
4 | 3 | nfn 1856 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
5 | nfdif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfrabw 3483 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 Ⅎwnfc 2893 {crab 3443 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-dif 3979 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |