MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdifOLD Structured version   Visualization version   GIF version

Theorem nfdifOLD 4153
Description: Obsolete version of nfdif 4152 as of 14-May-2025. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdifOLD 𝑥(𝐴𝐵)

Proof of Theorem nfdifOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3985 . 2 (𝐴𝐵) = {𝑦𝐴 ∣ ¬ 𝑦𝐵}
2 nfdif.2 . . . . 5 𝑥𝐵
32nfcri 2900 . . . 4 𝑥 𝑦𝐵
43nfn 1856 . . 3 𝑥 ¬ 𝑦𝐵
5 nfdif.1 . . 3 𝑥𝐴
64, 5nfrabw 3483 . 2 𝑥{𝑦𝐴 ∣ ¬ 𝑦𝐵}
71, 6nfcxfr 2906 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  wnfc 2893  {crab 3443  cdif 3973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-dif 3979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator