| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdifOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of nfdif 4109 as of 14-May-2025. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
| nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfdifOLD | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3940 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} | |
| 2 | nfdif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 2 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 4 | 3 | nfn 1857 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
| 5 | nfdif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | nfrabw 3459 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} |
| 7 | 1, 6 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 Ⅎwnfc 2884 {crab 3420 ∖ cdif 3928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-dif 3934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |