| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alephiso3 | Structured version Visualization version GIF version | ||
| Description: ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
| Ref | Expression |
|---|---|
| alephiso3 | ⊢ ℵ Isom E , ≺ (On, (ran card ∖ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephiso2 43650 | . 2 ⊢ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) | |
| 2 | omelon 9536 | . . . . . 6 ⊢ ω ∈ On | |
| 3 | elrncard 43629 | . . . . . . 7 ⊢ (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥)) | |
| 4 | 3 | simplbi 497 | . . . . . 6 ⊢ (𝑥 ∈ ran card → 𝑥 ∈ On) |
| 5 | ontri1 6340 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω)) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝑥 ∈ ran card → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω)) |
| 7 | 6 | rabbiia 3399 | . . . 4 ⊢ {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω} |
| 8 | dfdif2 3906 | . . . 4 ⊢ (ran card ∖ ω) = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω} | |
| 9 | 7, 8 | eqtr4i 2757 | . . 3 ⊢ {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω) |
| 10 | isoeq5 7255 | . . 3 ⊢ ({𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω) → (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω)))) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω))) |
| 12 | 1, 11 | mpbi 230 | 1 ⊢ ℵ Isom E , ≺ (On, (ran card ∖ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∖ cdif 3894 ⊆ wss 3897 class class class wbr 5089 E cep 5513 ran crn 5615 Oncon0 6306 Isom wiso 6482 ωcom 7796 ≈ cen 8866 ≺ csdm 8868 cardccrd 9828 ℵcale 9829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-har 9443 df-card 9832 df-aleph 9833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |