Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alephiso3 Structured version   Visualization version   GIF version

Theorem alephiso3 42886
Description: is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.)
Assertion
Ref Expression
alephiso3 ℵ Isom E , ≺ (On, (ran card ∖ ω))

Proof of Theorem alephiso3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephiso2 42885 . 2 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
2 omelon 9643 . . . . . 6 ω ∈ On
3 elrncard 42864 . . . . . . 7 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
43simplbi 497 . . . . . 6 (𝑥 ∈ ran card → 𝑥 ∈ On)
5 ontri1 6392 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
62, 4, 5sylancr 586 . . . . 5 (𝑥 ∈ ran card → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
76rabbiia 3430 . . . 4 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω}
8 dfdif2 3952 . . . 4 (ran card ∖ ω) = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω}
97, 8eqtr4i 2757 . . 3 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω)
10 isoeq5 7314 . . 3 ({𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω) → (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω))))
119, 10ax-mp 5 . 2 (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω)))
121, 11mpbi 229 1 ℵ Isom E , ≺ (On, (ran card ∖ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wcel 2098  wral 3055  {crab 3426  cdif 3940  wss 3943   class class class wbr 5141   E cep 5572  ran crn 5670  Oncon0 6358   Isom wiso 6538  ωcom 7852  cen 8938  csdm 8940  cardccrd 9932  cale 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-har 9554  df-card 9936  df-aleph 9937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator