Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alephiso3 Structured version   Visualization version   GIF version

Theorem alephiso3 43651
Description: is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.)
Assertion
Ref Expression
alephiso3 ℵ Isom E , ≺ (On, (ran card ∖ ω))

Proof of Theorem alephiso3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephiso2 43650 . 2 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
2 omelon 9536 . . . . . 6 ω ∈ On
3 elrncard 43629 . . . . . . 7 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
43simplbi 497 . . . . . 6 (𝑥 ∈ ran card → 𝑥 ∈ On)
5 ontri1 6340 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
62, 4, 5sylancr 587 . . . . 5 (𝑥 ∈ ran card → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
76rabbiia 3399 . . . 4 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω}
8 dfdif2 3906 . . . 4 (ran card ∖ ω) = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω}
97, 8eqtr4i 2757 . . 3 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω)
10 isoeq5 7255 . . 3 ({𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω) → (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω))))
119, 10ax-mp 5 . 2 (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω)))
121, 11mpbi 230 1 ℵ Isom E , ≺ (On, (ran card ∖ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cdif 3894  wss 3897   class class class wbr 5089   E cep 5513  ran crn 5615  Oncon0 6306   Isom wiso 6482  ωcom 7796  cen 8866  csdm 8868  cardccrd 9828  cale 9829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-har 9443  df-card 9832  df-aleph 9833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator