Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alephiso3 Structured version   Visualization version   GIF version

Theorem alephiso3 43552
Description: is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.)
Assertion
Ref Expression
alephiso3 ℵ Isom E , ≺ (On, (ran card ∖ ω))

Proof of Theorem alephiso3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephiso2 43551 . 2 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
2 omelon 9542 . . . . . 6 ω ∈ On
3 elrncard 43530 . . . . . . 7 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
43simplbi 497 . . . . . 6 (𝑥 ∈ ran card → 𝑥 ∈ On)
5 ontri1 6341 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
62, 4, 5sylancr 587 . . . . 5 (𝑥 ∈ ran card → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
76rabbiia 3398 . . . 4 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω}
8 dfdif2 3912 . . . 4 (ran card ∖ ω) = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω}
97, 8eqtr4i 2755 . . 3 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω)
10 isoeq5 7258 . . 3 ({𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω) → (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω))))
119, 10ax-mp 5 . 2 (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω)))
121, 11mpbi 230 1 ℵ Isom E , ≺ (On, (ran card ∖ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wral 3044  {crab 3394  cdif 3900  wss 3903   class class class wbr 5092   E cep 5518  ran crn 5620  Oncon0 6307   Isom wiso 6483  ωcom 7799  cen 8869  csdm 8871  cardccrd 9831  cale 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-har 9449  df-card 9835  df-aleph 9836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator