Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alephiso3 Structured version   Visualization version   GIF version

Theorem alephiso3 39993
Description: is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.)
Assertion
Ref Expression
alephiso3 ℵ Isom E , ≺ (On, (ran card ∖ ω))

Proof of Theorem alephiso3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephiso2 39992 . 2 ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥})
2 omelon 9102 . . . . . 6 ω ∈ On
3 elrncard 39977 . . . . . . 7 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
43simplbi 500 . . . . . 6 (𝑥 ∈ ran card → 𝑥 ∈ On)
5 ontri1 6218 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
62, 4, 5sylancr 589 . . . . 5 (𝑥 ∈ ran card → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
76rabbiia 3469 . . . 4 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω}
8 dfdif2 3938 . . . 4 (ran card ∖ ω) = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω}
97, 8eqtr4i 2846 . . 3 {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω)
10 isoeq5 7067 . . 3 ({𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω) → (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω))))
119, 10ax-mp 5 . 2 (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω)))
121, 11mpbi 232 1 ℵ Isom E , ≺ (On, (ran card ∖ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208   = wceq 1536  wcel 2113  wral 3137  {crab 3141  cdif 3926  wss 3929   class class class wbr 5059   E cep 5457  ran crn 5549  Oncon0 6184   Isom wiso 6349  ωcom 7573  cen 8499  csdm 8501  cardccrd 9357  cale 9358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-om 7574  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-oi 8967  df-har 9015  df-card 9361  df-aleph 9362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator