![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > alephiso3 | Structured version Visualization version GIF version |
Description: ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
Ref | Expression |
---|---|
alephiso3 | ⊢ ℵ Isom E , ≺ (On, (ran card ∖ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephiso2 42241 | . 2 ⊢ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) | |
2 | omelon 9636 | . . . . . 6 ⊢ ω ∈ On | |
3 | elrncard 42220 | . . . . . . 7 ⊢ (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥)) | |
4 | 3 | simplbi 499 | . . . . . 6 ⊢ (𝑥 ∈ ran card → 𝑥 ∈ On) |
5 | ontri1 6394 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω)) | |
6 | 2, 4, 5 | sylancr 588 | . . . . 5 ⊢ (𝑥 ∈ ran card → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω)) |
7 | 6 | rabbiia 3437 | . . . 4 ⊢ {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω} |
8 | dfdif2 3955 | . . . 4 ⊢ (ran card ∖ ω) = {𝑥 ∈ ran card ∣ ¬ 𝑥 ∈ ω} | |
9 | 7, 8 | eqtr4i 2764 | . . 3 ⊢ {𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω) |
10 | isoeq5 7312 | . . 3 ⊢ ({𝑥 ∈ ran card ∣ ω ⊆ 𝑥} = (ran card ∖ ω) → (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω)))) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) ↔ ℵ Isom E , ≺ (On, (ran card ∖ ω))) |
12 | 1, 11 | mpbi 229 | 1 ⊢ ℵ Isom E , ≺ (On, (ran card ∖ ω)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 ∖ cdif 3943 ⊆ wss 3946 class class class wbr 5146 E cep 5577 ran crn 5675 Oncon0 6360 Isom wiso 6540 ωcom 7849 ≈ cen 8931 ≺ csdm 8933 cardccrd 9925 ℵcale 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-inf2 9631 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-isom 6548 df-riota 7359 df-ov 7406 df-om 7850 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-oi 9500 df-har 9547 df-card 9929 df-aleph 9930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |