![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undifabs | Structured version Visualization version GIF version |
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
Ref | Expression |
---|---|
undifabs | ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif3 4120 | . 2 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = ((𝐴 ∪ 𝐴) ∖ (𝐵 ∖ 𝐴)) | |
2 | unidm 3985 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
3 | 2 | difeq1i 3953 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∖ (𝐵 ∖ 𝐴)) = (𝐴 ∖ (𝐵 ∖ 𝐴)) |
4 | difdif 3965 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 | |
5 | 1, 3, 4 | 3eqtri 2853 | 1 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∖ cdif 3795 ∪ cun 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 |
This theorem is referenced by: dfif5 4324 indifundif 29900 |
Copyright terms: Public domain | W3C validator |