![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undifabs | Structured version Visualization version GIF version |
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
Ref | Expression |
---|---|
undifabs | ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif3 4290 | . 2 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = ((𝐴 ∪ 𝐴) ∖ (𝐵 ∖ 𝐴)) | |
2 | unidm 4152 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
3 | 2 | difeq1i 4118 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∖ (𝐵 ∖ 𝐴)) = (𝐴 ∖ (𝐵 ∖ 𝐴)) |
4 | difdif 4130 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 | |
5 | 1, 3, 4 | 3eqtri 2764 | 1 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∖ cdif 3945 ∪ cun 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 |
This theorem is referenced by: dfif5 4544 indifundif 31757 |
Copyright terms: Public domain | W3C validator |