MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifabs Structured version   Visualization version   GIF version

Theorem undifabs 4411
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs (𝐴 ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem undifabs
StepHypRef Expression
1 undif3 4224 . 2 (𝐴 ∪ (𝐴𝐵)) = ((𝐴𝐴) ∖ (𝐵𝐴))
2 unidm 4086 . . 3 (𝐴𝐴) = 𝐴
32difeq1i 4053 . 2 ((𝐴𝐴) ∖ (𝐵𝐴)) = (𝐴 ∖ (𝐵𝐴))
4 difdif 4065 . 2 (𝐴 ∖ (𝐵𝐴)) = 𝐴
51, 3, 43eqtri 2770 1 (𝐴 ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  cun 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892
This theorem is referenced by:  dfif5  4475  indifundif  30873
  Copyright terms: Public domain W3C validator