MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifabs Structured version   Visualization version   GIF version

Theorem undifabs 4444
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs (𝐴 ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem undifabs
StepHypRef Expression
1 undif3 4266 . 2 (𝐴 ∪ (𝐴𝐵)) = ((𝐴𝐴) ∖ (𝐵𝐴))
2 unidm 4123 . . 3 (𝐴𝐴) = 𝐴
32difeq1i 4088 . 2 ((𝐴𝐴) ∖ (𝐵𝐴)) = (𝐴 ∖ (𝐵𝐴))
4 difdif 4101 . 2 (𝐴 ∖ (𝐵𝐴)) = 𝐴
51, 3, 43eqtri 2757 1 (𝐴 ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3914  cun 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922
This theorem is referenced by:  dfif5  4508  indifundif  32460
  Copyright terms: Public domain W3C validator