Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > undifabs | Structured version Visualization version GIF version |
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
Ref | Expression |
---|---|
undifabs | ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif3 4235 | . 2 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = ((𝐴 ∪ 𝐴) ∖ (𝐵 ∖ 𝐴)) | |
2 | unidm 4097 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
3 | 2 | difeq1i 4064 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∖ (𝐵 ∖ 𝐴)) = (𝐴 ∖ (𝐵 ∖ 𝐴)) |
4 | difdif 4076 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 | |
5 | 1, 3, 4 | 3eqtri 2769 | 1 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∖ cdif 3894 ∪ cun 3895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 |
This theorem is referenced by: dfif5 4487 indifundif 30981 |
Copyright terms: Public domain | W3C validator |