![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undifabs | Structured version Visualization version GIF version |
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
Ref | Expression |
---|---|
undifabs | ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif3 4319 | . 2 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = ((𝐴 ∪ 𝐴) ∖ (𝐵 ∖ 𝐴)) | |
2 | unidm 4180 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
3 | 2 | difeq1i 4145 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∖ (𝐵 ∖ 𝐴)) = (𝐴 ∖ (𝐵 ∖ 𝐴)) |
4 | difdif 4158 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 | |
5 | 1, 3, 4 | 3eqtri 2772 | 1 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 |
This theorem is referenced by: dfif5 4564 indifundif 32554 |
Copyright terms: Public domain | W3C validator |