| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwne | Structured version Visualization version GIF version | ||
| Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 4885. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| pwne | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnss 5327 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | |
| 2 | eqimss 4022 | . . 3 ⊢ (𝒫 𝐴 = 𝐴 → 𝒫 𝐴 ⊆ 𝐴) | |
| 3 | 2 | necon3bi 2959 | . 2 ⊢ (¬ 𝒫 𝐴 ⊆ 𝐴 → 𝒫 𝐴 ≠ 𝐴) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: pnfnemnf 11295 |
| Copyright terms: Public domain | W3C validator |