MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwne Structured version   Visualization version   GIF version

Theorem pwne 5291
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 4856. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
pwne (𝐴𝑉 → 𝒫 𝐴𝐴)

Proof of Theorem pwne
StepHypRef Expression
1 pwnss 5290 . 2 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
2 eqimss 3993 . . 3 (𝒫 𝐴 = 𝐴 → 𝒫 𝐴𝐴)
32necon3bi 2954 . 2 (¬ 𝒫 𝐴𝐴 → 𝒫 𝐴𝐴)
41, 3syl 17 1 (𝐴𝑉 → 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  wne 2928  wss 3902  𝒫 cpw 4550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-in 3909  df-ss 3919  df-pw 4552
This theorem is referenced by:  pnfnemnf  11164
  Copyright terms: Public domain W3C validator