MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwne Structured version   Visualization version   GIF version

Theorem pwne 5242
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 4816. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
pwne (𝐴𝑉 → 𝒫 𝐴𝐴)

Proof of Theorem pwne
StepHypRef Expression
1 pwnss 5241 . 2 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
2 eqimss 3957 . . 3 (𝒫 𝐴 = 𝐴 → 𝒫 𝐴𝐴)
32necon3bi 2967 . 2 (¬ 𝒫 𝐴𝐴 → 𝒫 𝐴𝐴)
41, 3syl 17 1 (𝐴𝑉 → 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2110  wne 2940  wss 3866  𝒫 cpw 4513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3070  df-v 3410  df-in 3873  df-ss 3883  df-pw 4515
This theorem is referenced by:  pnfnemnf  10888
  Copyright terms: Public domain W3C validator