Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwne | Structured version Visualization version GIF version |
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 4816. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pwne | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnss 5241 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | |
2 | eqimss 3957 | . . 3 ⊢ (𝒫 𝐴 = 𝐴 → 𝒫 𝐴 ⊆ 𝐴) | |
3 | 2 | necon3bi 2967 | . 2 ⊢ (¬ 𝒫 𝐴 ⊆ 𝐴 → 𝒫 𝐴 ≠ 𝐴) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2110 ≠ wne 2940 ⊆ wss 3866 𝒫 cpw 4513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3070 df-v 3410 df-in 3873 df-ss 3883 df-pw 4515 |
This theorem is referenced by: pnfnemnf 10888 |
Copyright terms: Public domain | W3C validator |