MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwne Structured version   Visualization version   GIF version

Theorem pwne 5268
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 4833. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
pwne (𝐴𝑉 → 𝒫 𝐴𝐴)

Proof of Theorem pwne
StepHypRef Expression
1 pwnss 5267 . 2 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
2 eqimss 3973 . . 3 (𝒫 𝐴 = 𝐴 → 𝒫 𝐴𝐴)
32necon3bi 2969 . 2 (¬ 𝒫 𝐴𝐴 → 𝒫 𝐴𝐴)
41, 3syl 17 1 (𝐴𝑉 → 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wne 2942  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  pnfnemnf  10961
  Copyright terms: Public domain W3C validator