Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk3nimkb Structured version   Visualization version   GIF version

Theorem clsk3nimkb 42873
Description: If the base set is not empty, axiom K3 does not imply KB. A concrete example with a pseudo-closure function of π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯)) is given. (Contributed by RP, 16-Jun-2021.)
Assertion
Ref Expression
clsk3nimkb Β¬ βˆ€π‘βˆ€π‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) β†’ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏))
Distinct variable group:   π‘˜,𝑏,𝑑,𝑠

Proof of Theorem clsk3nimkb
Dummy variables π‘₯ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1oex 8478 . . . . 5 1o ∈ V
2 1n0 8490 . . . . . 6 1o β‰  βˆ…
3 nelsn 4668 . . . . . 6 (1o β‰  βˆ… β†’ Β¬ 1o ∈ {βˆ…})
42, 3ax-mp 5 . . . . 5 Β¬ 1o ∈ {βˆ…}
5 eldif 3958 . . . . . 6 (1o ∈ (V βˆ– {βˆ…}) ↔ (1o ∈ V ∧ Β¬ 1o ∈ {βˆ…}))
6 ne0i 4334 . . . . . 6 (1o ∈ (V βˆ– {βˆ…}) β†’ (V βˆ– {βˆ…}) β‰  βˆ…)
75, 6sylbir 234 . . . . 5 ((1o ∈ V ∧ Β¬ 1o ∈ {βˆ…}) β†’ (V βˆ– {βˆ…}) β‰  βˆ…)
81, 4, 7mp2an 690 . . . 4 (V βˆ– {βˆ…}) β‰  βˆ…
9 r19.2zb 4495 . . . 4 ((V βˆ– {βˆ…}) β‰  βˆ… ↔ (βˆ€π‘ ∈ (V βˆ– {βˆ…})βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)) β†’ βˆƒπ‘ ∈ (V βˆ– {βˆ…})βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏))))
108, 9mpbi 229 . . 3 (βˆ€π‘ ∈ (V βˆ– {βˆ…})βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)) β†’ βˆƒπ‘ ∈ (V βˆ– {βˆ…})βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)))
11 rexex 3076 . . 3 (βˆƒπ‘ ∈ (V βˆ– {βˆ…})βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)) β†’ βˆƒπ‘βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)))
12 rexanali 3102 . . . . 5 (βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)) ↔ Β¬ βˆ€π‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) β†’ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)))
1312exbii 1850 . . . 4 (βˆƒπ‘βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)) ↔ βˆƒπ‘ Β¬ βˆ€π‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) β†’ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)))
14 exnal 1829 . . . 4 (βˆƒπ‘ Β¬ βˆ€π‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) β†’ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)) ↔ Β¬ βˆ€π‘βˆ€π‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) β†’ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)))
1513, 14sylbb 218 . . 3 (βˆƒπ‘βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)) β†’ Β¬ βˆ€π‘βˆ€π‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) β†’ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)))
1610, 11, 153syl 18 . 2 (βˆ€π‘ ∈ (V βˆ– {βˆ…})βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)) β†’ Β¬ βˆ€π‘βˆ€π‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) β†’ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)))
17 difelpw 5351 . . . . . 6 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ (𝑏 βˆ– π‘₯) ∈ 𝒫 𝑏)
1817adantr 481 . . . . 5 ((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘₯ ∈ 𝒫 𝑏) β†’ (𝑏 βˆ– π‘₯) ∈ 𝒫 𝑏)
1918fmpttd 7116 . . . 4 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯)):𝒫 π‘βŸΆπ’« 𝑏)
20 pwexg 5376 . . . . 5 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ 𝒫 𝑏 ∈ V)
2120, 20elmapd 8836 . . . 4 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ ((π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯)) ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↔ (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯)):𝒫 π‘βŸΆπ’« 𝑏))
2219, 21mpbird 256 . . 3 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯)) ∈ (𝒫 𝑏 ↑m 𝒫 𝑏))
23 simpllr 774 . . . . . . . . 9 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯)))
24 difeq2 4116 . . . . . . . . . 10 (π‘₯ = 𝑧 β†’ (𝑏 βˆ– π‘₯) = (𝑏 βˆ– 𝑧))
2524cbvmptv 5261 . . . . . . . . 9 (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯)) = (𝑧 ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– 𝑧))
2623, 25eqtrdi 2788 . . . . . . . 8 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ π‘˜ = (𝑧 ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– 𝑧)))
27 difeq2 4116 . . . . . . . . 9 (𝑧 = (𝑠 βˆͺ 𝑑) β†’ (𝑏 βˆ– 𝑧) = (𝑏 βˆ– (𝑠 βˆͺ 𝑑)))
2827adantl 482 . . . . . . . 8 (((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) ∧ 𝑧 = (𝑠 βˆͺ 𝑑)) β†’ (𝑏 βˆ– 𝑧) = (𝑏 βˆ– (𝑠 βˆͺ 𝑑)))
29 simplll 773 . . . . . . . . 9 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ 𝑏 ∈ (V βˆ– {βˆ…}))
30 simplr 767 . . . . . . . . . . 11 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ 𝑠 ∈ 𝒫 𝑏)
3130elpwid 4611 . . . . . . . . . 10 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ 𝑠 βŠ† 𝑏)
32 simpr 485 . . . . . . . . . . 11 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ 𝑑 ∈ 𝒫 𝑏)
3332elpwid 4611 . . . . . . . . . 10 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ 𝑑 βŠ† 𝑏)
3431, 33unssd 4186 . . . . . . . . 9 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (𝑠 βˆͺ 𝑑) βŠ† 𝑏)
3529, 34sselpwd 5326 . . . . . . . 8 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (𝑠 βˆͺ 𝑑) ∈ 𝒫 𝑏)
36 vex 3478 . . . . . . . . . 10 𝑏 ∈ V
3736difexi 5328 . . . . . . . . 9 (𝑏 βˆ– (𝑠 βˆͺ 𝑑)) ∈ V
3837a1i 11 . . . . . . . 8 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (𝑏 βˆ– (𝑠 βˆͺ 𝑑)) ∈ V)
3926, 28, 35, 38fvmptd 7005 . . . . . . 7 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (π‘˜β€˜(𝑠 βˆͺ 𝑑)) = (𝑏 βˆ– (𝑠 βˆͺ 𝑑)))
40 difeq2 4116 . . . . . . . . . . 11 (𝑧 = 𝑠 β†’ (𝑏 βˆ– 𝑧) = (𝑏 βˆ– 𝑠))
4140adantl 482 . . . . . . . . . 10 (((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) ∧ 𝑧 = 𝑠) β†’ (𝑏 βˆ– 𝑧) = (𝑏 βˆ– 𝑠))
4236difexi 5328 . . . . . . . . . . 11 (𝑏 βˆ– 𝑠) ∈ V
4342a1i 11 . . . . . . . . . 10 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (𝑏 βˆ– 𝑠) ∈ V)
4426, 41, 30, 43fvmptd 7005 . . . . . . . . 9 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (π‘˜β€˜π‘ ) = (𝑏 βˆ– 𝑠))
45 difeq2 4116 . . . . . . . . . . 11 (𝑧 = 𝑑 β†’ (𝑏 βˆ– 𝑧) = (𝑏 βˆ– 𝑑))
4645adantl 482 . . . . . . . . . 10 (((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) ∧ 𝑧 = 𝑑) β†’ (𝑏 βˆ– 𝑧) = (𝑏 βˆ– 𝑑))
4736difexi 5328 . . . . . . . . . . 11 (𝑏 βˆ– 𝑑) ∈ V
4847a1i 11 . . . . . . . . . 10 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (𝑏 βˆ– 𝑑) ∈ V)
4926, 46, 32, 48fvmptd 7005 . . . . . . . . 9 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (π‘˜β€˜π‘‘) = (𝑏 βˆ– 𝑑))
5044, 49uneq12d 4164 . . . . . . . 8 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = ((𝑏 βˆ– 𝑠) βˆͺ (𝑏 βˆ– 𝑑)))
51 difindi 4281 . . . . . . . 8 (𝑏 βˆ– (𝑠 ∩ 𝑑)) = ((𝑏 βˆ– 𝑠) βˆͺ (𝑏 βˆ– 𝑑))
5250, 51eqtr4di 2790 . . . . . . 7 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = (𝑏 βˆ– (𝑠 ∩ 𝑑)))
5339, 52sseq12d 4015 . . . . . 6 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ ((π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ↔ (𝑏 βˆ– (𝑠 βˆͺ 𝑑)) βŠ† (𝑏 βˆ– (𝑠 ∩ 𝑑))))
5453ralbidva 3175 . . . . 5 (((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) β†’ (βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ↔ βˆ€π‘‘ ∈ 𝒫 𝑏(𝑏 βˆ– (𝑠 βˆͺ 𝑑)) βŠ† (𝑏 βˆ– (𝑠 ∩ 𝑑))))
5554ralbidva 3175 . . . 4 ((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) β†’ (βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ↔ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(𝑏 βˆ– (𝑠 βˆͺ 𝑑)) βŠ† (𝑏 βˆ– (𝑠 ∩ 𝑑))))
5652eqeq1d 2734 . . . . . . . 8 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏 ↔ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏))
5756imbi2d 340 . . . . . . 7 ((((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑑 ∈ 𝒫 𝑏) β†’ (((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏) ↔ ((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏)))
5857ralbidva 3175 . . . . . 6 (((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) ∧ 𝑠 ∈ 𝒫 𝑏) β†’ (βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏) ↔ βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏)))
5958ralbidva 3175 . . . . 5 ((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) β†’ (βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏) ↔ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏)))
6059notbid 317 . . . 4 ((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) β†’ (Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏) ↔ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏)))
6155, 60anbi12d 631 . . 3 ((𝑏 ∈ (V βˆ– {βˆ…}) ∧ π‘˜ = (π‘₯ ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– π‘₯))) β†’ ((βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)) ↔ (βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(𝑏 βˆ– (𝑠 βˆͺ 𝑑)) βŠ† (𝑏 βˆ– (𝑠 ∩ 𝑑)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏))))
62 pwidg 4622 . . . . . 6 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ 𝑏 ∈ 𝒫 𝑏)
63 ssidd 4005 . . . . . 6 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ 𝑏 βŠ† 𝑏)
64 eldifsnneq 4794 . . . . . 6 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ Β¬ 𝑏 = βˆ…)
65 uneq1 4156 . . . . . . . . . 10 (𝑠 = 𝑏 β†’ (𝑠 βˆͺ 𝑑) = (𝑏 βˆͺ 𝑑))
6665eqeq1d 2734 . . . . . . . . 9 (𝑠 = 𝑏 β†’ ((𝑠 βˆͺ 𝑑) = 𝑏 ↔ (𝑏 βˆͺ 𝑑) = 𝑏))
67 ssequn2 4183 . . . . . . . . 9 (𝑑 βŠ† 𝑏 ↔ (𝑏 βˆͺ 𝑑) = 𝑏)
6866, 67bitr4di 288 . . . . . . . 8 (𝑠 = 𝑏 β†’ ((𝑠 βˆͺ 𝑑) = 𝑏 ↔ 𝑑 βŠ† 𝑏))
69 ineq1 4205 . . . . . . . . . . 11 (𝑠 = 𝑏 β†’ (𝑠 ∩ 𝑑) = (𝑏 ∩ 𝑑))
7069difeq2d 4122 . . . . . . . . . 10 (𝑠 = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = (𝑏 βˆ– (𝑏 ∩ 𝑑)))
7170eqeq1d 2734 . . . . . . . . 9 (𝑠 = 𝑏 β†’ ((𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏 ↔ (𝑏 βˆ– (𝑏 ∩ 𝑑)) = 𝑏))
7271notbid 317 . . . . . . . 8 (𝑠 = 𝑏 β†’ (Β¬ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏 ↔ Β¬ (𝑏 βˆ– (𝑏 ∩ 𝑑)) = 𝑏))
7368, 72anbi12d 631 . . . . . . 7 (𝑠 = 𝑏 β†’ (((𝑠 βˆͺ 𝑑) = 𝑏 ∧ Β¬ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏) ↔ (𝑑 βŠ† 𝑏 ∧ Β¬ (𝑏 βˆ– (𝑏 ∩ 𝑑)) = 𝑏)))
74 sseq1 4007 . . . . . . . 8 (𝑑 = 𝑏 β†’ (𝑑 βŠ† 𝑏 ↔ 𝑏 βŠ† 𝑏))
75 ineq2 4206 . . . . . . . . . . . . . 14 (𝑑 = 𝑏 β†’ (𝑏 ∩ 𝑑) = (𝑏 ∩ 𝑏))
76 inidm 4218 . . . . . . . . . . . . . 14 (𝑏 ∩ 𝑏) = 𝑏
7775, 76eqtrdi 2788 . . . . . . . . . . . . 13 (𝑑 = 𝑏 β†’ (𝑏 ∩ 𝑑) = 𝑏)
7877difeq2d 4122 . . . . . . . . . . . 12 (𝑑 = 𝑏 β†’ (𝑏 βˆ– (𝑏 ∩ 𝑑)) = (𝑏 βˆ– 𝑏))
79 difid 4370 . . . . . . . . . . . 12 (𝑏 βˆ– 𝑏) = βˆ…
8078, 79eqtrdi 2788 . . . . . . . . . . 11 (𝑑 = 𝑏 β†’ (𝑏 βˆ– (𝑏 ∩ 𝑑)) = βˆ…)
8180eqeq1d 2734 . . . . . . . . . 10 (𝑑 = 𝑏 β†’ ((𝑏 βˆ– (𝑏 ∩ 𝑑)) = 𝑏 ↔ βˆ… = 𝑏))
82 eqcom 2739 . . . . . . . . . 10 (βˆ… = 𝑏 ↔ 𝑏 = βˆ…)
8381, 82bitrdi 286 . . . . . . . . 9 (𝑑 = 𝑏 β†’ ((𝑏 βˆ– (𝑏 ∩ 𝑑)) = 𝑏 ↔ 𝑏 = βˆ…))
8483notbid 317 . . . . . . . 8 (𝑑 = 𝑏 β†’ (Β¬ (𝑏 βˆ– (𝑏 ∩ 𝑑)) = 𝑏 ↔ Β¬ 𝑏 = βˆ…))
8574, 84anbi12d 631 . . . . . . 7 (𝑑 = 𝑏 β†’ ((𝑑 βŠ† 𝑏 ∧ Β¬ (𝑏 βˆ– (𝑏 ∩ 𝑑)) = 𝑏) ↔ (𝑏 βŠ† 𝑏 ∧ Β¬ 𝑏 = βˆ…)))
8673, 85rspc2ev 3624 . . . . . 6 ((𝑏 ∈ 𝒫 𝑏 ∧ 𝑏 ∈ 𝒫 𝑏 ∧ (𝑏 βŠ† 𝑏 ∧ Β¬ 𝑏 = βˆ…)) β†’ βˆƒπ‘  ∈ 𝒫 π‘βˆƒπ‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 ∧ Β¬ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏))
8762, 62, 63, 64, 86syl112anc 1374 . . . . 5 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ βˆƒπ‘  ∈ 𝒫 π‘βˆƒπ‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 ∧ Β¬ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏))
88 rexanali 3102 . . . . . . 7 (βˆƒπ‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 ∧ Β¬ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏) ↔ Β¬ βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏))
8988rexbii 3094 . . . . . 6 (βˆƒπ‘  ∈ 𝒫 π‘βˆƒπ‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 ∧ Β¬ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏) ↔ βˆƒπ‘  ∈ 𝒫 𝑏 Β¬ βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏))
90 rexnal 3100 . . . . . 6 (βˆƒπ‘  ∈ 𝒫 𝑏 Β¬ βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏) ↔ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏))
9189, 90sylbb 218 . . . . 5 (βˆƒπ‘  ∈ 𝒫 π‘βˆƒπ‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 ∧ Β¬ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏) β†’ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏))
9287, 91syl 17 . . . 4 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏))
93 inss1 4228 . . . . . . 7 (𝑠 ∩ 𝑑) βŠ† 𝑠
94 ssun1 4172 . . . . . . 7 𝑠 βŠ† (𝑠 βˆͺ 𝑑)
9593, 94sstri 3991 . . . . . 6 (𝑠 ∩ 𝑑) βŠ† (𝑠 βˆͺ 𝑑)
96 sscon 4138 . . . . . 6 ((𝑠 ∩ 𝑑) βŠ† (𝑠 βˆͺ 𝑑) β†’ (𝑏 βˆ– (𝑠 βˆͺ 𝑑)) βŠ† (𝑏 βˆ– (𝑠 ∩ 𝑑)))
9795, 96ax-mp 5 . . . . 5 (𝑏 βˆ– (𝑠 βˆͺ 𝑑)) βŠ† (𝑏 βˆ– (𝑠 ∩ 𝑑))
9897rgen2w 3066 . . . 4 βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(𝑏 βˆ– (𝑠 βˆͺ 𝑑)) βŠ† (𝑏 βˆ– (𝑠 ∩ 𝑑))
9992, 98jctil 520 . . 3 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ (βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(𝑏 βˆ– (𝑠 βˆͺ 𝑑)) βŠ† (𝑏 βˆ– (𝑠 ∩ 𝑑)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ (𝑏 βˆ– (𝑠 ∩ 𝑑)) = 𝑏)))
10022, 61, 99rspcedvd 3614 . 2 (𝑏 ∈ (V βˆ– {βˆ…}) β†’ βˆƒπ‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) ∧ Β¬ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏)))
10116, 100mprg 3067 1 Β¬ βˆ€π‘βˆ€π‘˜ ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏(π‘˜β€˜(𝑠 βˆͺ 𝑑)) βŠ† ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) β†’ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑏((𝑠 βˆͺ 𝑑) = 𝑏 β†’ ((π‘˜β€˜π‘ ) βˆͺ (π‘˜β€˜π‘‘)) = 𝑏))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396  βˆ€wal 1539   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βˆ– cdif 3945   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  {csn 4628   ↦ cmpt 5231  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  1oc1o 8461   ↑m cmap 8822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1o 8468  df-map 8824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator