Step | Hyp | Ref
| Expression |
1 | | 1oex 8215 |
. . . . 5
⊢
1o ∈ V |
2 | | 1n0 8221 |
. . . . . 6
⊢
1o ≠ ∅ |
3 | | nelsn 4581 |
. . . . . 6
⊢
(1o ≠ ∅ → ¬ 1o ∈
{∅}) |
4 | 2, 3 | ax-mp 5 |
. . . . 5
⊢ ¬
1o ∈ {∅} |
5 | | eldif 3876 |
. . . . . 6
⊢
(1o ∈ (V ∖ {∅}) ↔ (1o ∈
V ∧ ¬ 1o ∈ {∅})) |
6 | | ne0i 4249 |
. . . . . 6
⊢
(1o ∈ (V ∖ {∅}) → (V ∖ {∅})
≠ ∅) |
7 | 5, 6 | sylbir 238 |
. . . . 5
⊢
((1o ∈ V ∧ ¬ 1o ∈ {∅})
→ (V ∖ {∅}) ≠ ∅) |
8 | 1, 4, 7 | mp2an 692 |
. . . 4
⊢ (V
∖ {∅}) ≠ ∅ |
9 | | r19.2zb 4407 |
. . . 4
⊢ ((V
∖ {∅}) ≠ ∅ ↔ (∀𝑏 ∈ (V ∖ {∅})∃𝑘 ∈ (𝒫 𝑏 ↑m 𝒫
𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) → ∃𝑏 ∈ (V ∖ {∅})∃𝑘 ∈ (𝒫 𝑏 ↑m 𝒫
𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)))) |
10 | 8, 9 | mpbi 233 |
. . 3
⊢
(∀𝑏 ∈ (V
∖ {∅})∃𝑘
∈ (𝒫 𝑏
↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) → ∃𝑏 ∈ (V ∖ {∅})∃𝑘 ∈ (𝒫 𝑏 ↑m 𝒫
𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏))) |
11 | | rexex 3162 |
. . 3
⊢
(∃𝑏 ∈ (V
∖ {∅})∃𝑘
∈ (𝒫 𝑏
↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) → ∃𝑏∃𝑘 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏))) |
12 | | rexanali 3184 |
. . . . 5
⊢
(∃𝑘 ∈
(𝒫 𝑏
↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) ↔ ¬ ∀𝑘 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏))) |
13 | 12 | exbii 1855 |
. . . 4
⊢
(∃𝑏∃𝑘 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) ↔ ∃𝑏 ¬ ∀𝑘 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏))) |
14 | | exnal 1834 |
. . . 4
⊢
(∃𝑏 ¬
∀𝑘 ∈ (𝒫
𝑏 ↑m
𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) ↔ ¬ ∀𝑏∀𝑘 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏))) |
15 | 13, 14 | sylbb 222 |
. . 3
⊢
(∃𝑏∃𝑘 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) → ¬ ∀𝑏∀𝑘 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏))) |
16 | 10, 11, 15 | 3syl 18 |
. 2
⊢
(∀𝑏 ∈ (V
∖ {∅})∃𝑘
∈ (𝒫 𝑏
↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) → ¬ ∀𝑏∀𝑘 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏))) |
17 | | difelpw 5243 |
. . . . . 6
⊢ (𝑏 ∈ (V ∖ {∅})
→ (𝑏 ∖ 𝑥) ∈ 𝒫 𝑏) |
18 | 17 | adantr 484 |
. . . . 5
⊢ ((𝑏 ∈ (V ∖ {∅})
∧ 𝑥 ∈ 𝒫
𝑏) → (𝑏 ∖ 𝑥) ∈ 𝒫 𝑏) |
19 | 18 | fmpttd 6932 |
. . . 4
⊢ (𝑏 ∈ (V ∖ {∅})
→ (𝑥 ∈ 𝒫
𝑏 ↦ (𝑏 ∖ 𝑥)):𝒫 𝑏⟶𝒫 𝑏) |
20 | | pwexg 5271 |
. . . . 5
⊢ (𝑏 ∈ (V ∖ {∅})
→ 𝒫 𝑏 ∈
V) |
21 | 20, 20 | elmapd 8522 |
. . . 4
⊢ (𝑏 ∈ (V ∖ {∅})
→ ((𝑥 ∈ 𝒫
𝑏 ↦ (𝑏 ∖ 𝑥)) ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↔ (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥)):𝒫 𝑏⟶𝒫 𝑏)) |
22 | 19, 21 | mpbird 260 |
. . 3
⊢ (𝑏 ∈ (V ∖ {∅})
→ (𝑥 ∈ 𝒫
𝑏 ↦ (𝑏 ∖ 𝑥)) ∈ (𝒫 𝑏 ↑m 𝒫 𝑏)) |
23 | | simpllr 776 |
. . . . . . . . 9
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) |
24 | | difeq2 4031 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑏 ∖ 𝑥) = (𝑏 ∖ 𝑧)) |
25 | 24 | cbvmptv 5158 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥)) = (𝑧 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑧)) |
26 | 23, 25 | eqtrdi 2794 |
. . . . . . . 8
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑘 = (𝑧 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑧))) |
27 | | difeq2 4031 |
. . . . . . . . 9
⊢ (𝑧 = (𝑠 ∪ 𝑡) → (𝑏 ∖ 𝑧) = (𝑏 ∖ (𝑠 ∪ 𝑡))) |
28 | 27 | adantl 485 |
. . . . . . . 8
⊢
(((((𝑏 ∈ (V
∖ {∅}) ∧ 𝑘
= (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) ∧ 𝑧 = (𝑠 ∪ 𝑡)) → (𝑏 ∖ 𝑧) = (𝑏 ∖ (𝑠 ∪ 𝑡))) |
29 | | simplll 775 |
. . . . . . . . 9
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑏 ∈ (V ∖
{∅})) |
30 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑠 ∈ 𝒫 𝑏) |
31 | 30 | elpwid 4524 |
. . . . . . . . . 10
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑠 ⊆ 𝑏) |
32 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑡 ∈ 𝒫 𝑏) |
33 | 32 | elpwid 4524 |
. . . . . . . . . 10
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑡 ⊆ 𝑏) |
34 | 31, 33 | unssd 4100 |
. . . . . . . . 9
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑠 ∪ 𝑡) ⊆ 𝑏) |
35 | 29, 34 | sselpwd 5219 |
. . . . . . . 8
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑠 ∪ 𝑡) ∈ 𝒫 𝑏) |
36 | | vex 3412 |
. . . . . . . . . 10
⊢ 𝑏 ∈ V |
37 | 36 | difexi 5221 |
. . . . . . . . 9
⊢ (𝑏 ∖ (𝑠 ∪ 𝑡)) ∈ V |
38 | 37 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑏 ∖ (𝑠 ∪ 𝑡)) ∈ V) |
39 | 26, 28, 35, 38 | fvmptd 6825 |
. . . . . . 7
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑘‘(𝑠 ∪ 𝑡)) = (𝑏 ∖ (𝑠 ∪ 𝑡))) |
40 | | difeq2 4031 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑠 → (𝑏 ∖ 𝑧) = (𝑏 ∖ 𝑠)) |
41 | 40 | adantl 485 |
. . . . . . . . . 10
⊢
(((((𝑏 ∈ (V
∖ {∅}) ∧ 𝑘
= (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) ∧ 𝑧 = 𝑠) → (𝑏 ∖ 𝑧) = (𝑏 ∖ 𝑠)) |
42 | 36 | difexi 5221 |
. . . . . . . . . . 11
⊢ (𝑏 ∖ 𝑠) ∈ V |
43 | 42 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑏 ∖ 𝑠) ∈ V) |
44 | 26, 41, 30, 43 | fvmptd 6825 |
. . . . . . . . 9
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑘‘𝑠) = (𝑏 ∖ 𝑠)) |
45 | | difeq2 4031 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑡 → (𝑏 ∖ 𝑧) = (𝑏 ∖ 𝑡)) |
46 | 45 | adantl 485 |
. . . . . . . . . 10
⊢
(((((𝑏 ∈ (V
∖ {∅}) ∧ 𝑘
= (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) ∧ 𝑧 = 𝑡) → (𝑏 ∖ 𝑧) = (𝑏 ∖ 𝑡)) |
47 | 36 | difexi 5221 |
. . . . . . . . . . 11
⊢ (𝑏 ∖ 𝑡) ∈ V |
48 | 47 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑏 ∖ 𝑡) ∈ V) |
49 | 26, 46, 32, 48 | fvmptd 6825 |
. . . . . . . . 9
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑘‘𝑡) = (𝑏 ∖ 𝑡)) |
50 | 44, 49 | uneq12d 4078 |
. . . . . . . 8
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = ((𝑏 ∖ 𝑠) ∪ (𝑏 ∖ 𝑡))) |
51 | | difindi 4196 |
. . . . . . . 8
⊢ (𝑏 ∖ (𝑠 ∩ 𝑡)) = ((𝑏 ∖ 𝑠) ∪ (𝑏 ∖ 𝑡)) |
52 | 50, 51 | eqtr4di 2796 |
. . . . . . 7
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = (𝑏 ∖ (𝑠 ∩ 𝑡))) |
53 | 39, 52 | sseq12d 3934 |
. . . . . 6
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → ((𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ↔ (𝑏 ∖ (𝑠 ∪ 𝑡)) ⊆ (𝑏 ∖ (𝑠 ∩ 𝑡)))) |
54 | 53 | ralbidva 3117 |
. . . . 5
⊢ (((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) → (∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ↔ ∀𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠 ∪ 𝑡)) ⊆ (𝑏 ∖ (𝑠 ∩ 𝑡)))) |
55 | 54 | ralbidva 3117 |
. . . 4
⊢ ((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) → (∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠 ∪ 𝑡)) ⊆ (𝑏 ∖ (𝑠 ∩ 𝑡)))) |
56 | 52 | eqeq1d 2739 |
. . . . . . . 8
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏 ↔ (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏)) |
57 | 56 | imbi2d 344 |
. . . . . . 7
⊢ ((((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏) ↔ ((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏))) |
58 | 57 | ralbidva 3117 |
. . . . . 6
⊢ (((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) → (∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏) ↔ ∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏))) |
59 | 58 | ralbidva 3117 |
. . . . 5
⊢ ((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) → (∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏) ↔ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏))) |
60 | 59 | notbid 321 |
. . . 4
⊢ ((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) → (¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏) ↔ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏))) |
61 | 55, 60 | anbi12d 634 |
. . 3
⊢ ((𝑏 ∈ (V ∖ {∅})
∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ 𝑥))) → ((∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) ↔ (∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠 ∪ 𝑡)) ⊆ (𝑏 ∖ (𝑠 ∩ 𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏)))) |
62 | | pwidg 4535 |
. . . . . 6
⊢ (𝑏 ∈ (V ∖ {∅})
→ 𝑏 ∈ 𝒫
𝑏) |
63 | | ssidd 3924 |
. . . . . 6
⊢ (𝑏 ∈ (V ∖ {∅})
→ 𝑏 ⊆ 𝑏) |
64 | | eldifsnneq 4704 |
. . . . . 6
⊢ (𝑏 ∈ (V ∖ {∅})
→ ¬ 𝑏 =
∅) |
65 | | uneq1 4070 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑏 → (𝑠 ∪ 𝑡) = (𝑏 ∪ 𝑡)) |
66 | 65 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑠 = 𝑏 → ((𝑠 ∪ 𝑡) = 𝑏 ↔ (𝑏 ∪ 𝑡) = 𝑏)) |
67 | | ssequn2 4097 |
. . . . . . . . 9
⊢ (𝑡 ⊆ 𝑏 ↔ (𝑏 ∪ 𝑡) = 𝑏) |
68 | 66, 67 | bitr4di 292 |
. . . . . . . 8
⊢ (𝑠 = 𝑏 → ((𝑠 ∪ 𝑡) = 𝑏 ↔ 𝑡 ⊆ 𝑏)) |
69 | | ineq1 4120 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑏 → (𝑠 ∩ 𝑡) = (𝑏 ∩ 𝑡)) |
70 | 69 | difeq2d 4037 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = (𝑏 ∖ (𝑏 ∩ 𝑡))) |
71 | 70 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑠 = 𝑏 → ((𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏 ↔ (𝑏 ∖ (𝑏 ∩ 𝑡)) = 𝑏)) |
72 | 71 | notbid 321 |
. . . . . . . 8
⊢ (𝑠 = 𝑏 → (¬ (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏 ↔ ¬ (𝑏 ∖ (𝑏 ∩ 𝑡)) = 𝑏)) |
73 | 68, 72 | anbi12d 634 |
. . . . . . 7
⊢ (𝑠 = 𝑏 → (((𝑠 ∪ 𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏) ↔ (𝑡 ⊆ 𝑏 ∧ ¬ (𝑏 ∖ (𝑏 ∩ 𝑡)) = 𝑏))) |
74 | | sseq1 3926 |
. . . . . . . 8
⊢ (𝑡 = 𝑏 → (𝑡 ⊆ 𝑏 ↔ 𝑏 ⊆ 𝑏)) |
75 | | ineq2 4121 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑏 → (𝑏 ∩ 𝑡) = (𝑏 ∩ 𝑏)) |
76 | | inidm 4133 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∩ 𝑏) = 𝑏 |
77 | 75, 76 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑏 → (𝑏 ∩ 𝑡) = 𝑏) |
78 | 77 | difeq2d 4037 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑏 → (𝑏 ∖ (𝑏 ∩ 𝑡)) = (𝑏 ∖ 𝑏)) |
79 | | difid 4285 |
. . . . . . . . . . . 12
⊢ (𝑏 ∖ 𝑏) = ∅ |
80 | 78, 79 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑏 → (𝑏 ∖ (𝑏 ∩ 𝑡)) = ∅) |
81 | 80 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑏 → ((𝑏 ∖ (𝑏 ∩ 𝑡)) = 𝑏 ↔ ∅ = 𝑏)) |
82 | | eqcom 2744 |
. . . . . . . . . 10
⊢ (∅
= 𝑏 ↔ 𝑏 = ∅) |
83 | 81, 82 | bitrdi 290 |
. . . . . . . . 9
⊢ (𝑡 = 𝑏 → ((𝑏 ∖ (𝑏 ∩ 𝑡)) = 𝑏 ↔ 𝑏 = ∅)) |
84 | 83 | notbid 321 |
. . . . . . . 8
⊢ (𝑡 = 𝑏 → (¬ (𝑏 ∖ (𝑏 ∩ 𝑡)) = 𝑏 ↔ ¬ 𝑏 = ∅)) |
85 | 74, 84 | anbi12d 634 |
. . . . . . 7
⊢ (𝑡 = 𝑏 → ((𝑡 ⊆ 𝑏 ∧ ¬ (𝑏 ∖ (𝑏 ∩ 𝑡)) = 𝑏) ↔ (𝑏 ⊆ 𝑏 ∧ ¬ 𝑏 = ∅))) |
86 | 73, 85 | rspc2ev 3549 |
. . . . . 6
⊢ ((𝑏 ∈ 𝒫 𝑏 ∧ 𝑏 ∈ 𝒫 𝑏 ∧ (𝑏 ⊆ 𝑏 ∧ ¬ 𝑏 = ∅)) → ∃𝑠 ∈ 𝒫 𝑏∃𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏)) |
87 | 62, 62, 63, 64, 86 | syl112anc 1376 |
. . . . 5
⊢ (𝑏 ∈ (V ∖ {∅})
→ ∃𝑠 ∈
𝒫 𝑏∃𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏)) |
88 | | rexanali 3184 |
. . . . . . 7
⊢
(∃𝑡 ∈
𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏) ↔ ¬ ∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏)) |
89 | 88 | rexbii 3170 |
. . . . . 6
⊢
(∃𝑠 ∈
𝒫 𝑏∃𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏) ↔ ∃𝑠 ∈ 𝒫 𝑏 ¬ ∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏)) |
90 | | rexnal 3160 |
. . . . . 6
⊢
(∃𝑠 ∈
𝒫 𝑏 ¬
∀𝑡 ∈ 𝒫
𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏) ↔ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏)) |
91 | 89, 90 | sylbb 222 |
. . . . 5
⊢
(∃𝑠 ∈
𝒫 𝑏∃𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏) → ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏)) |
92 | 87, 91 | syl 17 |
. . . 4
⊢ (𝑏 ∈ (V ∖ {∅})
→ ¬ ∀𝑠
∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏)) |
93 | | inss1 4143 |
. . . . . . 7
⊢ (𝑠 ∩ 𝑡) ⊆ 𝑠 |
94 | | ssun1 4086 |
. . . . . . 7
⊢ 𝑠 ⊆ (𝑠 ∪ 𝑡) |
95 | 93, 94 | sstri 3910 |
. . . . . 6
⊢ (𝑠 ∩ 𝑡) ⊆ (𝑠 ∪ 𝑡) |
96 | | sscon 4053 |
. . . . . 6
⊢ ((𝑠 ∩ 𝑡) ⊆ (𝑠 ∪ 𝑡) → (𝑏 ∖ (𝑠 ∪ 𝑡)) ⊆ (𝑏 ∖ (𝑠 ∩ 𝑡))) |
97 | 95, 96 | ax-mp 5 |
. . . . 5
⊢ (𝑏 ∖ (𝑠 ∪ 𝑡)) ⊆ (𝑏 ∖ (𝑠 ∩ 𝑡)) |
98 | 97 | rgen2w 3074 |
. . . 4
⊢
∀𝑠 ∈
𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠 ∪ 𝑡)) ⊆ (𝑏 ∖ (𝑠 ∩ 𝑡)) |
99 | 92, 98 | jctil 523 |
. . 3
⊢ (𝑏 ∈ (V ∖ {∅})
→ (∀𝑠 ∈
𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠 ∪ 𝑡)) ⊆ (𝑏 ∖ (𝑠 ∩ 𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → (𝑏 ∖ (𝑠 ∩ 𝑡)) = 𝑏))) |
100 | 22, 61, 99 | rspcedvd 3540 |
. 2
⊢ (𝑏 ∈ (V ∖ {∅})
→ ∃𝑘 ∈
(𝒫 𝑏
↑m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏))) |
101 | 16, 100 | mprg 3075 |
1
⊢ ¬
∀𝑏∀𝑘 ∈ (𝒫 𝑏 ↑m 𝒫
𝑏)(∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠 ∪ 𝑡)) ⊆ ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏∀𝑡 ∈ 𝒫 𝑏((𝑠 ∪ 𝑡) = 𝑏 → ((𝑘‘𝑠) ∪ (𝑘‘𝑡)) = 𝑏)) |