MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekindle Structured version   Visualization version   GIF version

Theorem dedekindle 10796
Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013.)
Assertion
Ref Expression
dedekindle ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem dedekindle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1189 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐴 ⊆ ℝ)
2 simpr2 1190 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐵 ⊆ ℝ)
3 simp1 1131 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴𝐵) = ∅)
4 simpl 485 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → 𝑥𝐴)
5 disjel 4404 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
63, 4, 5syl2an 597 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ¬ 𝑥𝐵)
7 eleq1w 2893 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
87biimpcd 251 . . . . . . . . . . 11 (𝑦𝐵 → (𝑦 = 𝑥𝑥𝐵))
98necon3bd 3028 . . . . . . . . . 10 (𝑦𝐵 → (¬ 𝑥𝐵𝑦𝑥))
109ad2antll 727 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (¬ 𝑥𝐵𝑦𝑥))
116, 10mpd 15 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝑥)
12 simp2 1132 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ)
13 ssel2 3960 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1412, 4, 13syl2an 597 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ ℝ)
15 simp3 1133 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐵 ⊆ ℝ)
16 simpr 487 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → 𝑦𝐵)
17 ssel2 3960 . . . . . . . . . . 11 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
1815, 16, 17syl2an 597 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 ∈ ℝ)
1914, 18ltlend 10777 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2019biimprd 250 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ((𝑥𝑦𝑦𝑥) → 𝑥 < 𝑦))
2111, 20mpan2d 692 . . . . . . 7 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝑦𝑥 < 𝑦))
2221ralimdvva 3177 . . . . . 6 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))
23223exp 1114 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ ℝ → (𝐵 ⊆ ℝ → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))))
24233imp2 1344 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
25 dedekind 10795 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
261, 2, 24, 25syl3anc 1366 . . 3 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
2726ex 415 . 2 ((𝐴𝐵) = ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
28 n0 4308 . . 3 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝐵))
29 simp1 1131 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 ⊆ ℝ)
30 elinel1 4170 . . . . . . 7 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐴)
31 ssel2 3960 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
3229, 30, 31syl2an 597 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → 𝑤 ∈ ℝ)
33 nfv 1909 . . . . . . . . 9 𝑥 𝐴 ⊆ ℝ
34 nfv 1909 . . . . . . . . 9 𝑥 𝐵 ⊆ ℝ
35 nfra1 3217 . . . . . . . . 9 𝑥𝑥𝐴𝑦𝐵 𝑥𝑦
3633, 34, 35nf3an 1896 . . . . . . . 8 𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
37 nfv 1909 . . . . . . . 8 𝑥 𝑤 ∈ (𝐴𝐵)
3836, 37nfan 1894 . . . . . . 7 𝑥((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵))
39 nfv 1909 . . . . . . . . . . 11 𝑦 𝐴 ⊆ ℝ
40 nfv 1909 . . . . . . . . . . 11 𝑦 𝐵 ⊆ ℝ
41 nfra2w 3225 . . . . . . . . . . 11 𝑦𝑥𝐴𝑦𝐵 𝑥𝑦
4239, 40, 41nf3an 1896 . . . . . . . . . 10 𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
43 nfv 1909 . . . . . . . . . 10 𝑦(𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)
4442, 43nfan 1894 . . . . . . . . 9 𝑦((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴))
45 rsp 3203 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → ∀𝑦𝐵 𝑥𝑦))
46 elinel2 4171 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐵)
47 breq2 5061 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
4847rspccv 3618 . . . . . . . . . . . . . . . . 17 (∀𝑦𝐵 𝑥𝑦 → (𝑤𝐵𝑥𝑤))
4946, 48syl5 34 . . . . . . . . . . . . . . . 16 (∀𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤))
5045, 49syl6 35 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤)))
5150com23 86 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → (𝑥𝐴𝑥𝑤)))
5251imp32 421 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦 ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
53523ad2antl3 1182 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
5453adantr 483 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑥𝑤)
55 simp3 1133 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
5630adantr 483 . . . . . . . . . . . . 13 ((𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴) → 𝑤𝐴)
57 breq1 5060 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
5857ralbidv 3195 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑦𝐵 𝑥𝑦 ↔ ∀𝑦𝐵 𝑤𝑦))
5958rspccva 3620 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦𝑤𝐴) → ∀𝑦𝐵 𝑤𝑦)
6055, 56, 59syl2an 597 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 𝑤𝑦)
6160r19.21bi 3206 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑤𝑦)
6254, 61jca 514 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → (𝑥𝑤𝑤𝑦))
6362ex 415 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → (𝑦𝐵 → (𝑥𝑤𝑤𝑦)))
6444, 63ralrimi 3214 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦))
6564expr 459 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → (𝑥𝐴 → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦)))
6638, 65ralrimi 3214 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦))
67 breq2 5061 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑥𝑧𝑥𝑤))
68 breq1 5060 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
6967, 68anbi12d 632 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑥𝑧𝑧𝑦) ↔ (𝑥𝑤𝑤𝑦)))
70692ralbidv 3197 . . . . . . 7 (𝑧 = 𝑤 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)))
7170rspcev 3621 . . . . . 6 ((𝑤 ∈ ℝ ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7232, 66, 71syl2anc 586 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7372expcom 416 . . . 4 (𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7473exlimiv 1925 . . 3 (∃𝑤 𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7528, 74sylbi 219 . 2 ((𝐴𝐵) ≠ ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7627, 75pm2.61ine 3098 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1082   = wceq 1531  wex 1774  wcel 2108  wne 3014  wral 3136  wrex 3137  cin 3933  wss 3934  c0 4289   class class class wbr 5057  cr 10528   < clt 10667  cle 10668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-mulcl 10591  ax-mulrcl 10592  ax-i2m1 10597  ax-1ne0 10598  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673
This theorem is referenced by:  axcontlem10  26751
  Copyright terms: Public domain W3C validator