| Step | Hyp | Ref
| Expression |
| 1 | | simpr1 1195 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → 𝐴 ⊆ ℝ) |
| 2 | | simpr2 1196 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → 𝐵 ⊆ ℝ) |
| 3 | | simp1 1136 |
. . . . . . . . . 10
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴 ∩ 𝐵) = ∅) |
| 4 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| 5 | | disjel 4423 |
. . . . . . . . . 10
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐵) |
| 6 | 3, 4, 5 | syl2an 596 |
. . . . . . . . 9
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ¬ 𝑥 ∈ 𝐵) |
| 7 | | eleq1w 2812 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
| 8 | 7 | biimpcd 249 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 → (𝑦 = 𝑥 → 𝑥 ∈ 𝐵)) |
| 9 | 8 | necon3bd 2940 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → (¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥)) |
| 10 | 9 | ad2antll 729 |
. . . . . . . . 9
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥)) |
| 11 | 6, 10 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ≠ 𝑥) |
| 12 | | simp2 1137 |
. . . . . . . . . . 11
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ) |
| 13 | | ssel2 3944 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 14 | 12, 4, 13 | syl2an 596 |
. . . . . . . . . 10
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ ℝ) |
| 15 | | simp3 1138 |
. . . . . . . . . . 11
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐵 ⊆ ℝ) |
| 16 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 17 | | ssel2 3944 |
. . . . . . . . . . 11
⊢ ((𝐵 ⊆ ℝ ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ) |
| 18 | 15, 16, 17 | syl2an 596 |
. . . . . . . . . 10
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ ℝ) |
| 19 | 14, 18 | ltlend 11326 |
. . . . . . . . 9
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) |
| 20 | 19 | biimprd 248 |
. . . . . . . 8
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) → 𝑥 < 𝑦)) |
| 21 | 11, 20 | mpan2d 694 |
. . . . . . 7
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≤ 𝑦 → 𝑥 < 𝑦)) |
| 22 | 21 | ralimdvva 3185 |
. . . . . 6
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦)) |
| 23 | 22 | 3exp 1119 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ ℝ → (𝐵 ⊆ ℝ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦)))) |
| 24 | 23 | 3imp2 1350 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦) |
| 25 | | dedekind 11344 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
| 26 | 1, 2, 24, 25 | syl3anc 1373 |
. . 3
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
| 27 | 26 | ex 412 |
. 2
⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
| 28 | | n0 4319 |
. . 3
⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴 ∩ 𝐵)) |
| 29 | | simp1 1136 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → 𝐴 ⊆ ℝ) |
| 30 | | elinel1 4167 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑤 ∈ 𝐴) |
| 31 | | ssel2 3944 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
| 32 | 29, 30, 31 | syl2an 596 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → 𝑤 ∈ ℝ) |
| 33 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝐴 ⊆
ℝ |
| 34 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝐵 ⊆
ℝ |
| 35 | | nfra1 3262 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 |
| 36 | 33, 34, 35 | nf3an 1901 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
| 37 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑤 ∈ (𝐴 ∩ 𝐵) |
| 38 | 36, 37 | nfan 1899 |
. . . . . . 7
⊢
Ⅎ𝑥((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) |
| 39 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝐴 ⊆
ℝ |
| 40 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝐵 ⊆
ℝ |
| 41 | | nfra2w 3276 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 |
| 42 | 39, 40, 41 | nf3an 1901 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
| 43 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴) |
| 44 | 42, 43 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑦((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
| 45 | | rsp 3226 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) |
| 46 | | elinel2 4168 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑤 ∈ 𝐵) |
| 47 | | breq2 5114 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤)) |
| 48 | 47 | rspccv 3588 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝐵 𝑥 ≤ 𝑦 → (𝑤 ∈ 𝐵 → 𝑥 ≤ 𝑤)) |
| 49 | 46, 48 | syl5 34 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝐵 𝑥 ≤ 𝑦 → (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑥 ≤ 𝑤)) |
| 50 | 45, 49 | syl6 35 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑥 ≤ 𝑤))) |
| 51 | 50 | com23 86 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → (𝑤 ∈ (𝐴 ∩ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ≤ 𝑤))) |
| 52 | 51 | imp32 418 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → 𝑥 ≤ 𝑤) |
| 53 | 52 | 3ad2antl3 1188 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → 𝑥 ≤ 𝑤) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝐵) → 𝑥 ≤ 𝑤) |
| 55 | | simp3 1138 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
| 56 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑤 ∈ 𝐴) |
| 57 | | breq1 5113 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) |
| 58 | 57 | ralbidv 3157 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑤 ≤ 𝑦)) |
| 59 | 58 | rspccva 3590 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝑤 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 𝑤 ≤ 𝑦) |
| 60 | 55, 56, 59 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → ∀𝑦 ∈ 𝐵 𝑤 ≤ 𝑦) |
| 61 | 60 | r19.21bi 3230 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝐵) → 𝑤 ≤ 𝑦) |
| 62 | 54, 61 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) |
| 63 | 62 | ex 412 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → (𝑦 ∈ 𝐵 → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) |
| 64 | 44, 63 | ralrimi 3236 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) |
| 65 | 64 | expr 456 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) |
| 66 | 38, 65 | ralrimi 3236 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) |
| 67 | | breq2 5114 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑤)) |
| 68 | | breq1 5113 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) |
| 69 | 67, 68 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) |
| 70 | 69 | 2ralbidv 3202 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) |
| 71 | 70 | rspcev 3591 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
| 72 | 32, 66, 71 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
| 73 | 72 | expcom 413 |
. . . 4
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
| 74 | 73 | exlimiv 1930 |
. . 3
⊢
(∃𝑤 𝑤 ∈ (𝐴 ∩ 𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
| 75 | 28, 74 | sylbi 217 |
. 2
⊢ ((𝐴 ∩ 𝐵) ≠ ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
| 76 | 27, 75 | pm2.61ine 3009 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |