MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekindle Structured version   Visualization version   GIF version

Theorem dedekindle 11382
Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013.)
Assertion
Ref Expression
dedekindle ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem dedekindle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1191 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐴 ⊆ ℝ)
2 simpr2 1192 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐵 ⊆ ℝ)
3 simp1 1133 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴𝐵) = ∅)
4 simpl 482 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → 𝑥𝐴)
5 disjel 4451 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
63, 4, 5syl2an 595 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ¬ 𝑥𝐵)
7 eleq1w 2810 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
87biimpcd 248 . . . . . . . . . . 11 (𝑦𝐵 → (𝑦 = 𝑥𝑥𝐵))
98necon3bd 2948 . . . . . . . . . 10 (𝑦𝐵 → (¬ 𝑥𝐵𝑦𝑥))
109ad2antll 726 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (¬ 𝑥𝐵𝑦𝑥))
116, 10mpd 15 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝑥)
12 simp2 1134 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ)
13 ssel2 3972 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1412, 4, 13syl2an 595 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ ℝ)
15 simp3 1135 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐵 ⊆ ℝ)
16 simpr 484 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → 𝑦𝐵)
17 ssel2 3972 . . . . . . . . . . 11 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
1815, 16, 17syl2an 595 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 ∈ ℝ)
1914, 18ltlend 11363 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2019biimprd 247 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ((𝑥𝑦𝑦𝑥) → 𝑥 < 𝑦))
2111, 20mpan2d 691 . . . . . . 7 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝑦𝑥 < 𝑦))
2221ralimdvva 3198 . . . . . 6 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))
23223exp 1116 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ ℝ → (𝐵 ⊆ ℝ → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))))
24233imp2 1346 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
25 dedekind 11381 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
261, 2, 24, 25syl3anc 1368 . . 3 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
2726ex 412 . 2 ((𝐴𝐵) = ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
28 n0 4341 . . 3 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝐵))
29 simp1 1133 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 ⊆ ℝ)
30 elinel1 4190 . . . . . . 7 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐴)
31 ssel2 3972 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
3229, 30, 31syl2an 595 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → 𝑤 ∈ ℝ)
33 nfv 1909 . . . . . . . . 9 𝑥 𝐴 ⊆ ℝ
34 nfv 1909 . . . . . . . . 9 𝑥 𝐵 ⊆ ℝ
35 nfra1 3275 . . . . . . . . 9 𝑥𝑥𝐴𝑦𝐵 𝑥𝑦
3633, 34, 35nf3an 1896 . . . . . . . 8 𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
37 nfv 1909 . . . . . . . 8 𝑥 𝑤 ∈ (𝐴𝐵)
3836, 37nfan 1894 . . . . . . 7 𝑥((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵))
39 nfv 1909 . . . . . . . . . . 11 𝑦 𝐴 ⊆ ℝ
40 nfv 1909 . . . . . . . . . . 11 𝑦 𝐵 ⊆ ℝ
41 nfra2w 3290 . . . . . . . . . . 11 𝑦𝑥𝐴𝑦𝐵 𝑥𝑦
4239, 40, 41nf3an 1896 . . . . . . . . . 10 𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
43 nfv 1909 . . . . . . . . . 10 𝑦(𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)
4442, 43nfan 1894 . . . . . . . . 9 𝑦((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴))
45 rsp 3238 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → ∀𝑦𝐵 𝑥𝑦))
46 elinel2 4191 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐵)
47 breq2 5145 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
4847rspccv 3603 . . . . . . . . . . . . . . . . 17 (∀𝑦𝐵 𝑥𝑦 → (𝑤𝐵𝑥𝑤))
4946, 48syl5 34 . . . . . . . . . . . . . . . 16 (∀𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤))
5045, 49syl6 35 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤)))
5150com23 86 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → (𝑥𝐴𝑥𝑤)))
5251imp32 418 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦 ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
53523ad2antl3 1184 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
5453adantr 480 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑥𝑤)
55 simp3 1135 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
5630adantr 480 . . . . . . . . . . . . 13 ((𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴) → 𝑤𝐴)
57 breq1 5144 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
5857ralbidv 3171 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑦𝐵 𝑥𝑦 ↔ ∀𝑦𝐵 𝑤𝑦))
5958rspccva 3605 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦𝑤𝐴) → ∀𝑦𝐵 𝑤𝑦)
6055, 56, 59syl2an 595 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 𝑤𝑦)
6160r19.21bi 3242 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑤𝑦)
6254, 61jca 511 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → (𝑥𝑤𝑤𝑦))
6362ex 412 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → (𝑦𝐵 → (𝑥𝑤𝑤𝑦)))
6444, 63ralrimi 3248 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦))
6564expr 456 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → (𝑥𝐴 → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦)))
6638, 65ralrimi 3248 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦))
67 breq2 5145 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑥𝑧𝑥𝑤))
68 breq1 5144 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
6967, 68anbi12d 630 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑥𝑧𝑧𝑦) ↔ (𝑥𝑤𝑤𝑦)))
70692ralbidv 3212 . . . . . . 7 (𝑧 = 𝑤 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)))
7170rspcev 3606 . . . . . 6 ((𝑤 ∈ ℝ ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7232, 66, 71syl2anc 583 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7372expcom 413 . . . 4 (𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7473exlimiv 1925 . . 3 (∃𝑤 𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7528, 74sylbi 216 . 2 ((𝐴𝐵) ≠ ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7627, 75pm2.61ine 3019 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2934  wral 3055  wrex 3064  cin 3942  wss 3943  c0 4317   class class class wbr 5141  cr 11111   < clt 11252  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-mulcl 11174  ax-mulrcl 11175  ax-i2m1 11180  ax-1ne0 11181  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258
This theorem is referenced by:  axcontlem10  28739
  Copyright terms: Public domain W3C validator