Step | Hyp | Ref
| Expression |
1 | | simpr1 1192 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → 𝐴 ⊆ ℝ) |
2 | | simpr2 1193 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → 𝐵 ⊆ ℝ) |
3 | | simp1 1134 |
. . . . . . . . . 10
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴 ∩ 𝐵) = ∅) |
4 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
5 | | disjel 4387 |
. . . . . . . . . 10
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐵) |
6 | 3, 4, 5 | syl2an 595 |
. . . . . . . . 9
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ¬ 𝑥 ∈ 𝐵) |
7 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
8 | 7 | biimpcd 248 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 → (𝑦 = 𝑥 → 𝑥 ∈ 𝐵)) |
9 | 8 | necon3bd 2956 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → (¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥)) |
10 | 9 | ad2antll 725 |
. . . . . . . . 9
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥)) |
11 | 6, 10 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ≠ 𝑥) |
12 | | simp2 1135 |
. . . . . . . . . . 11
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ) |
13 | | ssel2 3912 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
14 | 12, 4, 13 | syl2an 595 |
. . . . . . . . . 10
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ ℝ) |
15 | | simp3 1136 |
. . . . . . . . . . 11
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐵 ⊆ ℝ) |
16 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
17 | | ssel2 3912 |
. . . . . . . . . . 11
⊢ ((𝐵 ⊆ ℝ ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ) |
18 | 15, 16, 17 | syl2an 595 |
. . . . . . . . . 10
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ ℝ) |
19 | 14, 18 | ltlend 11050 |
. . . . . . . . 9
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) |
20 | 19 | biimprd 247 |
. . . . . . . 8
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) → 𝑥 < 𝑦)) |
21 | 11, 20 | mpan2d 690 |
. . . . . . 7
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≤ 𝑦 → 𝑥 < 𝑦)) |
22 | 21 | ralimdvva 3104 |
. . . . . 6
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦)) |
23 | 22 | 3exp 1117 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ ℝ → (𝐵 ⊆ ℝ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦)))) |
24 | 23 | 3imp2 1347 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦) |
25 | | dedekind 11068 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
26 | 1, 2, 24, 25 | syl3anc 1369 |
. . 3
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
27 | 26 | ex 412 |
. 2
⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
28 | | n0 4277 |
. . 3
⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴 ∩ 𝐵)) |
29 | | simp1 1134 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → 𝐴 ⊆ ℝ) |
30 | | elinel1 4125 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑤 ∈ 𝐴) |
31 | | ssel2 3912 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
32 | 29, 30, 31 | syl2an 595 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → 𝑤 ∈ ℝ) |
33 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝐴 ⊆
ℝ |
34 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝐵 ⊆
ℝ |
35 | | nfra1 3142 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 |
36 | 33, 34, 35 | nf3an 1905 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
37 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑤 ∈ (𝐴 ∩ 𝐵) |
38 | 36, 37 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑥((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) |
39 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝐴 ⊆
ℝ |
40 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝐵 ⊆
ℝ |
41 | | nfra2w 3151 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 |
42 | 39, 40, 41 | nf3an 1905 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
43 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴) |
44 | 42, 43 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑦((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
45 | | rsp 3129 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) |
46 | | elinel2 4126 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑤 ∈ 𝐵) |
47 | | breq2 5074 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤)) |
48 | 47 | rspccv 3549 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝐵 𝑥 ≤ 𝑦 → (𝑤 ∈ 𝐵 → 𝑥 ≤ 𝑤)) |
49 | 46, 48 | syl5 34 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝐵 𝑥 ≤ 𝑦 → (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑥 ≤ 𝑤)) |
50 | 45, 49 | syl6 35 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑥 ≤ 𝑤))) |
51 | 50 | com23 86 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → (𝑤 ∈ (𝐴 ∩ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ≤ 𝑤))) |
52 | 51 | imp32 418 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → 𝑥 ≤ 𝑤) |
53 | 52 | 3ad2antl3 1185 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → 𝑥 ≤ 𝑤) |
54 | 53 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝐵) → 𝑥 ≤ 𝑤) |
55 | | simp3 1136 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
56 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑤 ∈ 𝐴) |
57 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) |
58 | 57 | ralbidv 3120 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑤 ≤ 𝑦)) |
59 | 58 | rspccva 3551 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝑤 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 𝑤 ≤ 𝑦) |
60 | 55, 56, 59 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → ∀𝑦 ∈ 𝐵 𝑤 ≤ 𝑦) |
61 | 60 | r19.21bi 3132 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝐵) → 𝑤 ≤ 𝑦) |
62 | 54, 61 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) |
63 | 62 | ex 412 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → (𝑦 ∈ 𝐵 → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) |
64 | 44, 63 | ralrimi 3139 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) |
65 | 64 | expr 456 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) |
66 | 38, 65 | ralrimi 3139 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) |
67 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑤)) |
68 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) |
69 | 67, 68 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) |
70 | 69 | 2ralbidv 3122 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) |
71 | 70 | rspcev 3552 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
72 | 32, 66, 71 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
73 | 72 | expcom 413 |
. . . 4
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
74 | 73 | exlimiv 1934 |
. . 3
⊢
(∃𝑤 𝑤 ∈ (𝐴 ∩ 𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
75 | 28, 74 | sylbi 216 |
. 2
⊢ ((𝐴 ∩ 𝐵) ≠ ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
76 | 27, 75 | pm2.61ine 3027 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |