| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr1 1194 | . . . 4
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → 𝐴 ⊆ ℝ) | 
| 2 |  | simpr2 1195 | . . . 4
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → 𝐵 ⊆ ℝ) | 
| 3 |  | simp1 1136 | . . . . . . . . . 10
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴 ∩ 𝐵) = ∅) | 
| 4 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐴) | 
| 5 |  | disjel 4456 | . . . . . . . . . 10
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐵) | 
| 6 | 3, 4, 5 | syl2an 596 | . . . . . . . . 9
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ¬ 𝑥 ∈ 𝐵) | 
| 7 |  | eleq1w 2823 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | 
| 8 | 7 | biimpcd 249 | . . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 → (𝑦 = 𝑥 → 𝑥 ∈ 𝐵)) | 
| 9 | 8 | necon3bd 2953 | . . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → (¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥)) | 
| 10 | 9 | ad2antll 729 | . . . . . . . . 9
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥)) | 
| 11 | 6, 10 | mpd 15 | . . . . . . . 8
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ≠ 𝑥) | 
| 12 |  | simp2 1137 | . . . . . . . . . . 11
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ) | 
| 13 |  | ssel2 3977 | . . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | 
| 14 | 12, 4, 13 | syl2an 596 | . . . . . . . . . 10
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ ℝ) | 
| 15 |  | simp3 1138 | . . . . . . . . . . 11
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐵 ⊆ ℝ) | 
| 16 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | 
| 17 |  | ssel2 3977 | . . . . . . . . . . 11
⊢ ((𝐵 ⊆ ℝ ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ) | 
| 18 | 15, 16, 17 | syl2an 596 | . . . . . . . . . 10
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ ℝ) | 
| 19 | 14, 18 | ltlend 11407 | . . . . . . . . 9
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) | 
| 20 | 19 | biimprd 248 | . . . . . . . 8
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) → 𝑥 < 𝑦)) | 
| 21 | 11, 20 | mpan2d 694 | . . . . . . 7
⊢ ((((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≤ 𝑦 → 𝑥 < 𝑦)) | 
| 22 | 21 | ralimdvva 3205 | . . . . . 6
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦)) | 
| 23 | 22 | 3exp 1119 | . . . . 5
⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ ℝ → (𝐵 ⊆ ℝ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦)))) | 
| 24 | 23 | 3imp2 1349 | . . . 4
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦) | 
| 25 |  | dedekind 11425 | . . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) | 
| 26 | 1, 2, 24, 25 | syl3anc 1372 | . . 3
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) | 
| 27 | 26 | ex 412 | . 2
⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) | 
| 28 |  | n0 4352 | . . 3
⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴 ∩ 𝐵)) | 
| 29 |  | simp1 1136 | . . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → 𝐴 ⊆ ℝ) | 
| 30 |  | elinel1 4200 | . . . . . . 7
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑤 ∈ 𝐴) | 
| 31 |  | ssel2 3977 | . . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) | 
| 32 | 29, 30, 31 | syl2an 596 | . . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → 𝑤 ∈ ℝ) | 
| 33 |  | nfv 1913 | . . . . . . . . 9
⊢
Ⅎ𝑥 𝐴 ⊆
ℝ | 
| 34 |  | nfv 1913 | . . . . . . . . 9
⊢
Ⅎ𝑥 𝐵 ⊆
ℝ | 
| 35 |  | nfra1 3283 | . . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 | 
| 36 | 33, 34, 35 | nf3an 1900 | . . . . . . . 8
⊢
Ⅎ𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | 
| 37 |  | nfv 1913 | . . . . . . . 8
⊢
Ⅎ𝑥 𝑤 ∈ (𝐴 ∩ 𝐵) | 
| 38 | 36, 37 | nfan 1898 | . . . . . . 7
⊢
Ⅎ𝑥((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) | 
| 39 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑦 𝐴 ⊆
ℝ | 
| 40 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑦 𝐵 ⊆
ℝ | 
| 41 |  | nfra2w 3298 | . . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 | 
| 42 | 39, 40, 41 | nf3an 1900 | . . . . . . . . . 10
⊢
Ⅎ𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | 
| 43 |  | nfv 1913 | . . . . . . . . . 10
⊢
Ⅎ𝑦(𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴) | 
| 44 | 42, 43 | nfan 1898 | . . . . . . . . 9
⊢
Ⅎ𝑦((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) | 
| 45 |  | rsp 3246 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦)) | 
| 46 |  | elinel2 4201 | . . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑤 ∈ 𝐵) | 
| 47 |  | breq2 5146 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤)) | 
| 48 | 47 | rspccv 3618 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝐵 𝑥 ≤ 𝑦 → (𝑤 ∈ 𝐵 → 𝑥 ≤ 𝑤)) | 
| 49 | 46, 48 | syl5 34 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝐵 𝑥 ≤ 𝑦 → (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑥 ≤ 𝑤)) | 
| 50 | 45, 49 | syl6 35 | . . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑤 ∈ (𝐴 ∩ 𝐵) → 𝑥 ≤ 𝑤))) | 
| 51 | 50 | com23 86 | . . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → (𝑤 ∈ (𝐴 ∩ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ≤ 𝑤))) | 
| 52 | 51 | imp32 418 | . . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → 𝑥 ≤ 𝑤) | 
| 53 | 52 | 3ad2antl3 1187 | . . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → 𝑥 ≤ 𝑤) | 
| 54 | 53 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝐵) → 𝑥 ≤ 𝑤) | 
| 55 |  | simp3 1138 | . . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | 
| 56 | 30 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑤 ∈ 𝐴) | 
| 57 |  | breq1 5145 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | 
| 58 | 57 | ralbidv 3177 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑤 ≤ 𝑦)) | 
| 59 | 58 | rspccva 3620 | . . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝑤 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 𝑤 ≤ 𝑦) | 
| 60 | 55, 56, 59 | syl2an 596 | . . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → ∀𝑦 ∈ 𝐵 𝑤 ≤ 𝑦) | 
| 61 | 60 | r19.21bi 3250 | . . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝐵) → 𝑤 ≤ 𝑦) | 
| 62 | 54, 61 | jca 511 | . . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) | 
| 63 | 62 | ex 412 | . . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → (𝑦 ∈ 𝐵 → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) | 
| 64 | 44, 63 | ralrimi 3256 | . . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ (𝑤 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∈ 𝐴)) → ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) | 
| 65 | 64 | expr 456 | . . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) | 
| 66 | 38, 65 | ralrimi 3256 | . . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) | 
| 67 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑤)) | 
| 68 |  | breq1 5145 | . . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | 
| 69 | 67, 68 | anbi12d 632 | . . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) | 
| 70 | 69 | 2ralbidv 3220 | . . . . . . 7
⊢ (𝑧 = 𝑤 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦))) | 
| 71 | 70 | rspcev 3621 | . . . . . 6
⊢ ((𝑤 ∈ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) | 
| 72 | 32, 66, 71 | syl2anc 584 | . . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝑤 ∈ (𝐴 ∩ 𝐵)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) | 
| 73 | 72 | expcom 413 | . . . 4
⊢ (𝑤 ∈ (𝐴 ∩ 𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) | 
| 74 | 73 | exlimiv 1929 | . . 3
⊢
(∃𝑤 𝑤 ∈ (𝐴 ∩ 𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) | 
| 75 | 28, 74 | sylbi 217 | . 2
⊢ ((𝐴 ∩ 𝐵) ≠ ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) | 
| 76 | 27, 75 | pm2.61ine 3024 | 1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |