Proof of Theorem fprodsplit
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iftrue 4530 | . . . . 5
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 1) = 𝐶) | 
| 2 | 1 | prodeq2i 15955 | . . . 4
⊢
∏𝑘 ∈
𝐴 if(𝑘 ∈ 𝐴, 𝐶, 1) = ∏𝑘 ∈ 𝐴 𝐶 | 
| 3 |  | ssun1 4177 | . . . . . 6
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | 
| 4 |  | fprodsplit.2 | . . . . . 6
⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | 
| 5 | 3, 4 | sseqtrrid 4026 | . . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝑈) | 
| 6 | 1 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 1) = 𝐶) | 
| 7 | 5 | sselda 3982 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑈) | 
| 8 |  | fprodsplit.4 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | 
| 9 | 7, 8 | syldan 591 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | 
| 10 | 6, 9 | eqeltrd 2840 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 1) ∈ ℂ) | 
| 11 |  | eldifn 4131 | . . . . . . 7
⊢ (𝑘 ∈ (𝑈 ∖ 𝐴) → ¬ 𝑘 ∈ 𝐴) | 
| 12 | 11 | iffalsed 4535 | . . . . . 6
⊢ (𝑘 ∈ (𝑈 ∖ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 1) = 1) | 
| 13 | 12 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑈 ∖ 𝐴)) → if(𝑘 ∈ 𝐴, 𝐶, 1) = 1) | 
| 14 |  | fprodsplit.3 | . . . . 5
⊢ (𝜑 → 𝑈 ∈ Fin) | 
| 15 | 5, 10, 13, 14 | fprodss 15985 | . . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 if(𝑘 ∈ 𝐴, 𝐶, 1) = ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 1)) | 
| 16 | 2, 15 | eqtr3id 2790 | . . 3
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 1)) | 
| 17 |  | iftrue 4530 | . . . . 5
⊢ (𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, 𝐶, 1) = 𝐶) | 
| 18 | 17 | prodeq2i 15955 | . . . 4
⊢
∏𝑘 ∈
𝐵 if(𝑘 ∈ 𝐵, 𝐶, 1) = ∏𝑘 ∈ 𝐵 𝐶 | 
| 19 |  | ssun2 4178 | . . . . . 6
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | 
| 20 | 19, 4 | sseqtrrid 4026 | . . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝑈) | 
| 21 | 17 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 1) = 𝐶) | 
| 22 | 20 | sselda 3982 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝑈) | 
| 23 | 22, 8 | syldan 591 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) | 
| 24 | 21, 23 | eqeltrd 2840 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 1) ∈ ℂ) | 
| 25 |  | eldifn 4131 | . . . . . . 7
⊢ (𝑘 ∈ (𝑈 ∖ 𝐵) → ¬ 𝑘 ∈ 𝐵) | 
| 26 | 25 | iffalsed 4535 | . . . . . 6
⊢ (𝑘 ∈ (𝑈 ∖ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 1) = 1) | 
| 27 | 26 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑈 ∖ 𝐵)) → if(𝑘 ∈ 𝐵, 𝐶, 1) = 1) | 
| 28 | 20, 24, 27, 14 | fprodss 15985 | . . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐵, 𝐶, 1) = ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 1)) | 
| 29 | 18, 28 | eqtr3id 2790 | . . 3
⊢ (𝜑 → ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 1)) | 
| 30 | 16, 29 | oveq12d 7450 | . 2
⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶) = (∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 1) · ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 1))) | 
| 31 |  | ax-1cn 11214 | . . . 4
⊢ 1 ∈
ℂ | 
| 32 |  | ifcl 4570 | . . . 4
⊢ ((𝐶 ∈ ℂ ∧ 1 ∈
ℂ) → if(𝑘 ∈
𝐴, 𝐶, 1) ∈ ℂ) | 
| 33 | 8, 31, 32 | sylancl 586 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → if(𝑘 ∈ 𝐴, 𝐶, 1) ∈ ℂ) | 
| 34 |  | ifcl 4570 | . . . 4
⊢ ((𝐶 ∈ ℂ ∧ 1 ∈
ℂ) → if(𝑘 ∈
𝐵, 𝐶, 1) ∈ ℂ) | 
| 35 | 8, 31, 34 | sylancl 586 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → if(𝑘 ∈ 𝐵, 𝐶, 1) ∈ ℂ) | 
| 36 | 14, 33, 35 | fprodmul 15997 | . 2
⊢ (𝜑 → ∏𝑘 ∈ 𝑈 (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = (∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 1) · ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 1))) | 
| 37 | 4 | eleq2d 2826 | . . . . . 6
⊢ (𝜑 → (𝑘 ∈ 𝑈 ↔ 𝑘 ∈ (𝐴 ∪ 𝐵))) | 
| 38 |  | elun 4152 | . . . . . 6
⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) | 
| 39 | 37, 38 | bitrdi 287 | . . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝑈 ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵))) | 
| 40 | 39 | biimpa 476 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) | 
| 41 |  | fprodsplit.1 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | 
| 42 |  | disjel 4456 | . . . . . . . . 9
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐵) | 
| 43 | 41, 42 | sylan 580 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐵) | 
| 44 | 43 | iffalsed 4535 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐵, 𝐶, 1) = 1) | 
| 45 | 6, 44 | oveq12d 7450 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = (𝐶 · 1)) | 
| 46 | 9 | mulridd 11279 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 · 1) = 𝐶) | 
| 47 | 45, 46 | eqtrd 2776 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = 𝐶) | 
| 48 | 43 | ex 412 | . . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵)) | 
| 49 | 48 | con2d 134 | . . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐵 → ¬ 𝑘 ∈ 𝐴)) | 
| 50 | 49 | imp 406 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ¬ 𝑘 ∈ 𝐴) | 
| 51 | 50 | iffalsed 4535 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐴, 𝐶, 1) = 1) | 
| 52 | 51, 21 | oveq12d 7450 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = (1 · 𝐶)) | 
| 53 | 23 | mullidd 11280 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (1 · 𝐶) = 𝐶) | 
| 54 | 52, 53 | eqtrd 2776 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = 𝐶) | 
| 55 | 47, 54 | jaodan 959 | . . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = 𝐶) | 
| 56 | 40, 55 | syldan 591 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = 𝐶) | 
| 57 | 56 | prodeq2dv 15959 | . 2
⊢ (𝜑 → ∏𝑘 ∈ 𝑈 (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = ∏𝑘 ∈ 𝑈 𝐶) | 
| 58 | 30, 36, 57 | 3eqtr2rd 2783 | 1
⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |