| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvun1 | Structured version Visualization version GIF version | ||
| Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| fvun1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6586 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → Fun 𝐹) |
| 3 | fnfun 6586 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
| 4 | 3 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → Fun 𝐺) |
| 5 | fndm 6589 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 6 | fndm 6589 | . . . . . . . 8 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
| 7 | 5, 6 | ineqan12d 4171 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
| 8 | 7 | eqeq1d 2735 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
| 9 | 8 | biimprd 248 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((𝐴 ∩ 𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅)) |
| 10 | 9 | adantrd 491 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅)) |
| 11 | 10 | 3impia 1117 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
| 12 | fvun 6918 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐹‘𝑋) ∪ (𝐺‘𝑋))) | |
| 13 | 2, 4, 11, 12 | syl21anc 837 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐹‘𝑋) ∪ (𝐺‘𝑋))) |
| 14 | disjel 4406 | . . . . . . . 8 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋 ∈ 𝐵) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ 𝐵) |
| 16 | 6 | eleq2d 2819 | . . . . . . . 8 ⊢ (𝐺 Fn 𝐵 → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐵)) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐵)) |
| 18 | 15, 17 | mtbird 325 | . . . . . 6 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ dom 𝐺) |
| 19 | 18 | 3adant1 1130 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ dom 𝐺) |
| 20 | ndmfv 6860 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐺‘𝑋) = ∅) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (𝐺‘𝑋) = ∅) |
| 22 | 21 | uneq2d 4117 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑋) ∪ (𝐺‘𝑋)) = ((𝐹‘𝑋) ∪ ∅)) |
| 23 | un0 4343 | . . 3 ⊢ ((𝐹‘𝑋) ∪ ∅) = (𝐹‘𝑋) | |
| 24 | 22, 23 | eqtrdi 2784 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑋) ∪ (𝐺‘𝑋)) = (𝐹‘𝑋)) |
| 25 | 13, 24 | eqtrd 2768 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 dom cdm 5619 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: fvun2 6920 fvun1d 6921 frrlem12 8233 enfixsn 9006 ptunhmeo 23724 noextenddif 27608 axlowdimlem6 28927 axlowdimlem8 28929 axlowdimlem11 28932 vtxdun 29462 isoun 32687 cycpmfv3 33091 lbsdiflsp0 33660 sseqfv1 34423 reprsuc 34649 breprexplema 34664 cvmliftlem5 35354 fullfunfv 36012 finixpnum 37665 poimirlem1 37681 poimirlem2 37682 poimirlem3 37683 poimirlem4 37684 poimirlem6 37686 poimirlem7 37687 poimirlem11 37691 poimirlem12 37692 poimirlem16 37696 poimirlem17 37697 poimirlem19 37699 poimirlem22 37702 poimirlem23 37703 poimirlem28 37708 aacllem 49926 |
| Copyright terms: Public domain | W3C validator |