![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvun1 | Structured version Visualization version GIF version |
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
Ref | Expression |
---|---|
fvun1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6669 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → Fun 𝐹) |
3 | fnfun 6669 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
4 | 3 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → Fun 𝐺) |
5 | fndm 6672 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | fndm 6672 | . . . . . . . 8 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
7 | 5, 6 | ineqan12d 4230 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
8 | 7 | eqeq1d 2737 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
9 | 8 | biimprd 248 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((𝐴 ∩ 𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅)) |
10 | 9 | adantrd 491 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅)) |
11 | 10 | 3impia 1116 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
12 | fvun 6999 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐹‘𝑋) ∪ (𝐺‘𝑋))) | |
13 | 2, 4, 11, 12 | syl21anc 838 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐹‘𝑋) ∪ (𝐺‘𝑋))) |
14 | disjel 4463 | . . . . . . . 8 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋 ∈ 𝐵) | |
15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ 𝐵) |
16 | 6 | eleq2d 2825 | . . . . . . . 8 ⊢ (𝐺 Fn 𝐵 → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐵)) |
17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐵)) |
18 | 15, 17 | mtbird 325 | . . . . . 6 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ dom 𝐺) |
19 | 18 | 3adant1 1129 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ dom 𝐺) |
20 | ndmfv 6942 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐺‘𝑋) = ∅) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (𝐺‘𝑋) = ∅) |
22 | 21 | uneq2d 4178 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑋) ∪ (𝐺‘𝑋)) = ((𝐹‘𝑋) ∪ ∅)) |
23 | un0 4400 | . . 3 ⊢ ((𝐹‘𝑋) ∪ ∅) = (𝐹‘𝑋) | |
24 | 22, 23 | eqtrdi 2791 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑋) ∪ (𝐺‘𝑋)) = (𝐹‘𝑋)) |
25 | 13, 24 | eqtrd 2775 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 dom cdm 5689 Fun wfun 6557 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: fvun2 7001 fvun1d 7002 frrlem12 8321 enfixsn 9120 ptunhmeo 23832 noextenddif 27728 axlowdimlem6 28977 axlowdimlem8 28979 axlowdimlem11 28982 vtxdun 29514 isoun 32717 cycpmfv3 33118 lbsdiflsp0 33654 sseqfv1 34371 reprsuc 34609 breprexplema 34624 cvmliftlem5 35274 fullfunfv 35929 finixpnum 37592 poimirlem1 37608 poimirlem2 37609 poimirlem3 37610 poimirlem4 37611 poimirlem6 37613 poimirlem7 37614 poimirlem11 37618 poimirlem12 37619 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem22 37629 poimirlem23 37630 poimirlem28 37635 aacllem 49032 |
Copyright terms: Public domain | W3C validator |