MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun1 Structured version   Visualization version   GIF version

Theorem fvun1 6754
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 6453 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
213ad2ant1 1129 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐹)
3 fnfun 6453 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
433ad2ant2 1130 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐺)
5 fndm 6455 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
6 fndm 6455 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
75, 6ineqan12d 4191 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
87eqeq1d 2823 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴𝐵) = ∅))
98biimprd 250 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅))
109adantrd 494 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (((𝐴𝐵) = ∅ ∧ 𝑋𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅))
11103impia 1113 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
12 fvun 6753 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝑋) = ((𝐹𝑋) ∪ (𝐺𝑋)))
132, 4, 11, 12syl21anc 835 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = ((𝐹𝑋) ∪ (𝐺𝑋)))
14 disjel 4406 . . . . . . . 8 (((𝐴𝐵) = ∅ ∧ 𝑋𝐴) → ¬ 𝑋𝐵)
1514adantl 484 . . . . . . 7 ((𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ¬ 𝑋𝐵)
166eleq2d 2898 . . . . . . . 8 (𝐺 Fn 𝐵 → (𝑋 ∈ dom 𝐺𝑋𝐵))
1716adantr 483 . . . . . . 7 ((𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (𝑋 ∈ dom 𝐺𝑋𝐵))
1815, 17mtbird 327 . . . . . 6 ((𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ¬ 𝑋 ∈ dom 𝐺)
19183adant1 1126 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ¬ 𝑋 ∈ dom 𝐺)
20 ndmfv 6700 . . . . 5 𝑋 ∈ dom 𝐺 → (𝐺𝑋) = ∅)
2119, 20syl 17 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (𝐺𝑋) = ∅)
2221uneq2d 4139 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝑋) ∪ (𝐺𝑋)) = ((𝐹𝑋) ∪ ∅))
23 un0 4344 . . 3 ((𝐹𝑋) ∪ ∅) = (𝐹𝑋)
2422, 23syl6eq 2872 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝑋) ∪ (𝐺𝑋)) = (𝐹𝑋))
2513, 24eqtrd 2856 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cun 3934  cin 3935  c0 4291  dom cdm 5555  Fun wfun 6349   Fn wfn 6350  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363
This theorem is referenced by:  fvun2  6755  enfixsn  8626  hashf1lem1  13814  ptunhmeo  22416  axlowdimlem6  26733  axlowdimlem8  26735  axlowdimlem11  26738  vtxdun  27263  isoun  30437  cycpmfv3  30757  lbsdiflsp0  31022  sseqfv1  31647  reprsuc  31886  breprexplema  31901  cvmliftlem5  32536  frrlem12  33134  noextenddif  33175  fullfunfv  33408  finixpnum  34892  poimirlem1  34908  poimirlem2  34909  poimirlem3  34910  poimirlem4  34911  poimirlem6  34913  poimirlem7  34914  poimirlem11  34918  poimirlem12  34919  poimirlem16  34923  poimirlem17  34924  poimirlem19  34926  poimirlem22  34929  poimirlem23  34930  poimirlem28  34935  aacllem  44922
  Copyright terms: Public domain W3C validator