MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun1 Structured version   Visualization version   GIF version

Theorem fvun1 6979
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 6646 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
213ad2ant1 1133 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐹)
3 fnfun 6646 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
433ad2ant2 1134 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐺)
5 fndm 6649 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
6 fndm 6649 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
75, 6ineqan12d 4213 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
87eqeq1d 2734 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴𝐵) = ∅))
98biimprd 247 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅))
109adantrd 492 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (((𝐴𝐵) = ∅ ∧ 𝑋𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅))
11103impia 1117 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
12 fvun 6978 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝑋) = ((𝐹𝑋) ∪ (𝐺𝑋)))
132, 4, 11, 12syl21anc 836 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = ((𝐹𝑋) ∪ (𝐺𝑋)))
14 disjel 4455 . . . . . . . 8 (((𝐴𝐵) = ∅ ∧ 𝑋𝐴) → ¬ 𝑋𝐵)
1514adantl 482 . . . . . . 7 ((𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ¬ 𝑋𝐵)
166eleq2d 2819 . . . . . . . 8 (𝐺 Fn 𝐵 → (𝑋 ∈ dom 𝐺𝑋𝐵))
1716adantr 481 . . . . . . 7 ((𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (𝑋 ∈ dom 𝐺𝑋𝐵))
1815, 17mtbird 324 . . . . . 6 ((𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ¬ 𝑋 ∈ dom 𝐺)
19183adant1 1130 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ¬ 𝑋 ∈ dom 𝐺)
20 ndmfv 6923 . . . . 5 𝑋 ∈ dom 𝐺 → (𝐺𝑋) = ∅)
2119, 20syl 17 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (𝐺𝑋) = ∅)
2221uneq2d 4162 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝑋) ∪ (𝐺𝑋)) = ((𝐹𝑋) ∪ ∅))
23 un0 4389 . . 3 ((𝐹𝑋) ∪ ∅) = (𝐹𝑋)
2422, 23eqtrdi 2788 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝑋) ∪ (𝐺𝑋)) = (𝐹𝑋))
2513, 24eqtrd 2772 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cun 3945  cin 3946  c0 4321  dom cdm 5675  Fun wfun 6534   Fn wfn 6535  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-fv 6548
This theorem is referenced by:  fvun2  6980  fvun1d  6981  frrlem12  8278  enfixsn  9077  ptunhmeo  23303  noextenddif  27160  axlowdimlem6  28194  axlowdimlem8  28196  axlowdimlem11  28199  vtxdun  28727  isoun  31910  cycpmfv3  32261  lbsdiflsp0  32699  sseqfv1  33376  reprsuc  33615  breprexplema  33630  cvmliftlem5  34268  fullfunfv  34907  finixpnum  36461  poimirlem1  36477  poimirlem2  36478  poimirlem3  36479  poimirlem4  36480  poimirlem6  36482  poimirlem7  36483  poimirlem11  36487  poimirlem12  36488  poimirlem16  36492  poimirlem17  36493  poimirlem19  36495  poimirlem22  36498  poimirlem23  36499  poimirlem28  36504  aacllem  47801
  Copyright terms: Public domain W3C validator