MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun1 Structured version   Visualization version   GIF version

Theorem fvun1 6859
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 6533 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
213ad2ant1 1132 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐹)
3 fnfun 6533 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
433ad2ant2 1133 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐺)
5 fndm 6536 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
6 fndm 6536 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
75, 6ineqan12d 4148 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
87eqeq1d 2740 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴𝐵) = ∅))
98biimprd 247 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅))
109adantrd 492 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (((𝐴𝐵) = ∅ ∧ 𝑋𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅))
11103impia 1116 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
12 fvun 6858 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝑋) = ((𝐹𝑋) ∪ (𝐺𝑋)))
132, 4, 11, 12syl21anc 835 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = ((𝐹𝑋) ∪ (𝐺𝑋)))
14 disjel 4390 . . . . . . . 8 (((𝐴𝐵) = ∅ ∧ 𝑋𝐴) → ¬ 𝑋𝐵)
1514adantl 482 . . . . . . 7 ((𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ¬ 𝑋𝐵)
166eleq2d 2824 . . . . . . . 8 (𝐺 Fn 𝐵 → (𝑋 ∈ dom 𝐺𝑋𝐵))
1716adantr 481 . . . . . . 7 ((𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (𝑋 ∈ dom 𝐺𝑋𝐵))
1815, 17mtbird 325 . . . . . 6 ((𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ¬ 𝑋 ∈ dom 𝐺)
19183adant1 1129 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ¬ 𝑋 ∈ dom 𝐺)
20 ndmfv 6804 . . . . 5 𝑋 ∈ dom 𝐺 → (𝐺𝑋) = ∅)
2119, 20syl 17 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (𝐺𝑋) = ∅)
2221uneq2d 4097 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝑋) ∪ (𝐺𝑋)) = ((𝐹𝑋) ∪ ∅))
23 un0 4324 . . 3 ((𝐹𝑋) ∪ ∅) = (𝐹𝑋)
2422, 23eqtrdi 2794 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝑋) ∪ (𝐺𝑋)) = (𝐹𝑋))
2513, 24eqtrd 2778 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cun 3885  cin 3886  c0 4256  dom cdm 5589  Fun wfun 6427   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  fvun2  6860  fvun1d  6861  frrlem12  8113  enfixsn  8868  ptunhmeo  22959  axlowdimlem6  27315  axlowdimlem8  27317  axlowdimlem11  27320  vtxdun  27848  isoun  31034  cycpmfv3  31382  lbsdiflsp0  31707  sseqfv1  32356  reprsuc  32595  breprexplema  32610  cvmliftlem5  33251  noextenddif  33871  fullfunfv  34249  finixpnum  35762  poimirlem1  35778  poimirlem2  35779  poimirlem3  35780  poimirlem4  35781  poimirlem6  35783  poimirlem7  35784  poimirlem11  35788  poimirlem12  35789  poimirlem16  35793  poimirlem17  35794  poimirlem19  35796  poimirlem22  35799  poimirlem23  35800  poimirlem28  35805  aacllem  46505
  Copyright terms: Public domain W3C validator