| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvun1 | Structured version Visualization version GIF version | ||
| Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| fvun1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6586 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → Fun 𝐹) |
| 3 | fnfun 6586 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
| 4 | 3 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → Fun 𝐺) |
| 5 | fndm 6589 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 6 | fndm 6589 | . . . . . . . 8 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
| 7 | 5, 6 | ineqan12d 4175 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
| 8 | 7 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
| 9 | 8 | biimprd 248 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((𝐴 ∩ 𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅)) |
| 10 | 9 | adantrd 491 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅)) |
| 11 | 10 | 3impia 1117 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
| 12 | fvun 6917 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐹‘𝑋) ∪ (𝐺‘𝑋))) | |
| 13 | 2, 4, 11, 12 | syl21anc 837 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐹‘𝑋) ∪ (𝐺‘𝑋))) |
| 14 | disjel 4410 | . . . . . . . 8 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋 ∈ 𝐵) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ 𝐵) |
| 16 | 6 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝐺 Fn 𝐵 → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐵)) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐵)) |
| 18 | 15, 17 | mtbird 325 | . . . . . 6 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ dom 𝐺) |
| 19 | 18 | 3adant1 1130 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ dom 𝐺) |
| 20 | ndmfv 6859 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐺‘𝑋) = ∅) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (𝐺‘𝑋) = ∅) |
| 22 | 21 | uneq2d 4121 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑋) ∪ (𝐺‘𝑋)) = ((𝐹‘𝑋) ∪ ∅)) |
| 23 | un0 4347 | . . 3 ⊢ ((𝐹‘𝑋) ∪ ∅) = (𝐹‘𝑋) | |
| 24 | 22, 23 | eqtrdi 2780 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑋) ∪ (𝐺‘𝑋)) = (𝐹‘𝑋)) |
| 25 | 13, 24 | eqtrd 2764 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ∩ cin 3904 ∅c0 4286 dom cdm 5623 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: fvun2 6919 fvun1d 6920 frrlem12 8237 enfixsn 9010 ptunhmeo 23711 noextenddif 27596 axlowdimlem6 28910 axlowdimlem8 28912 axlowdimlem11 28915 vtxdun 29445 isoun 32658 cycpmfv3 33070 lbsdiflsp0 33598 sseqfv1 34356 reprsuc 34582 breprexplema 34597 cvmliftlem5 35261 fullfunfv 35920 finixpnum 37584 poimirlem1 37600 poimirlem2 37601 poimirlem3 37602 poimirlem4 37603 poimirlem6 37605 poimirlem7 37606 poimirlem11 37610 poimirlem12 37611 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem22 37621 poimirlem23 37622 poimirlem28 37627 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |