![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvun1 | Structured version Visualization version GIF version |
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
Ref | Expression |
---|---|
fvun1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6650 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → Fun 𝐹) |
3 | fnfun 6650 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
4 | 3 | 3ad2ant2 1135 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → Fun 𝐺) |
5 | fndm 6653 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | fndm 6653 | . . . . . . . 8 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
7 | 5, 6 | ineqan12d 4215 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
8 | 7 | eqeq1d 2735 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
9 | 8 | biimprd 247 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((𝐴 ∩ 𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅)) |
10 | 9 | adantrd 493 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅)) |
11 | 10 | 3impia 1118 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
12 | fvun 6982 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐹‘𝑋) ∪ (𝐺‘𝑋))) | |
13 | 2, 4, 11, 12 | syl21anc 837 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐹‘𝑋) ∪ (𝐺‘𝑋))) |
14 | disjel 4457 | . . . . . . . 8 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋 ∈ 𝐵) | |
15 | 14 | adantl 483 | . . . . . . 7 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ 𝐵) |
16 | 6 | eleq2d 2820 | . . . . . . . 8 ⊢ (𝐺 Fn 𝐵 → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐵)) |
17 | 16 | adantr 482 | . . . . . . 7 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐵)) |
18 | 15, 17 | mtbird 325 | . . . . . 6 ⊢ ((𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ dom 𝐺) |
19 | 18 | 3adant1 1131 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ¬ 𝑋 ∈ dom 𝐺) |
20 | ndmfv 6927 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐺‘𝑋) = ∅) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → (𝐺‘𝑋) = ∅) |
22 | 21 | uneq2d 4164 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑋) ∪ (𝐺‘𝑋)) = ((𝐹‘𝑋) ∪ ∅)) |
23 | un0 4391 | . . 3 ⊢ ((𝐹‘𝑋) ∪ ∅) = (𝐹‘𝑋) | |
24 | 22, 23 | eqtrdi 2789 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑋) ∪ (𝐺‘𝑋)) = (𝐹‘𝑋)) |
25 | 13, 24 | eqtrd 2773 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 ∩ cin 3948 ∅c0 4323 dom cdm 5677 Fun wfun 6538 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: fvun2 6984 fvun1d 6985 frrlem12 8282 enfixsn 9081 ptunhmeo 23312 noextenddif 27171 axlowdimlem6 28205 axlowdimlem8 28207 axlowdimlem11 28210 vtxdun 28738 isoun 31923 cycpmfv3 32274 lbsdiflsp0 32711 sseqfv1 33388 reprsuc 33627 breprexplema 33642 cvmliftlem5 34280 fullfunfv 34919 finixpnum 36473 poimirlem1 36489 poimirlem2 36490 poimirlem3 36491 poimirlem4 36492 poimirlem6 36494 poimirlem7 36495 poimirlem11 36499 poimirlem12 36500 poimirlem16 36504 poimirlem17 36505 poimirlem19 36507 poimirlem22 36510 poimirlem23 36511 poimirlem28 36516 aacllem 47848 |
Copyright terms: Public domain | W3C validator |