Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelldsys Structured version   Visualization version   GIF version

Theorem unelldsys 31417
Description: Lambda-systems are closed under disjoint set unions. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Hypotheses
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
unelldsys.s (𝜑𝑆𝐿)
unelldsys.a (𝜑𝐴𝑆)
unelldsys.b (𝜑𝐵𝑆)
unelldsys.c (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
unelldsys (𝜑 → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥   𝑆,𝑠,𝑥   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑠)   𝑆(𝑦)   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)

Proof of Theorem unelldsys
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 uneq1 4131 . . . . 5 (𝐴 = ∅ → (𝐴𝐵) = (∅ ∪ 𝐵))
21adantl 484 . . . 4 ((𝜑𝐴 = ∅) → (𝐴𝐵) = (∅ ∪ 𝐵))
3 uncom 4128 . . . . 5 (𝐵 ∪ ∅) = (∅ ∪ 𝐵)
4 un0 4343 . . . . 5 (𝐵 ∪ ∅) = 𝐵
53, 4eqtr3i 2846 . . . 4 (∅ ∪ 𝐵) = 𝐵
62, 5syl6eq 2872 . . 3 ((𝜑𝐴 = ∅) → (𝐴𝐵) = 𝐵)
7 unelldsys.b . . . 4 (𝜑𝐵𝑆)
87adantr 483 . . 3 ((𝜑𝐴 = ∅) → 𝐵𝑆)
96, 8eqeltrd 2913 . 2 ((𝜑𝐴 = ∅) → (𝐴𝐵) ∈ 𝑆)
10 unelldsys.a . . . . 5 (𝜑𝐴𝑆)
11 uniprg 4855 . . . . 5 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
1210, 7, 11syl2anc 586 . . . 4 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
1312adantr 483 . . 3 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} = (𝐴𝐵))
14 prct 30449 . . . . . 6 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
1510, 7, 14syl2anc 586 . . . . 5 (𝜑 → {𝐴, 𝐵} ≼ ω)
1615adantr 483 . . . 4 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} ≼ ω)
17 unelldsys.c . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
1817adantr 483 . . . . 5 ((𝜑𝐴 ≠ ∅) → (𝐴𝐵) = ∅)
1910adantr 483 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝑆)
207adantr 483 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐵𝑆)
21 n0 4309 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2221biimpi 218 . . . . . . . 8 (𝐴 ≠ ∅ → ∃𝑧 𝑧𝐴)
2322adantl 484 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → ∃𝑧 𝑧𝐴)
24 disjel 4405 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑧𝐴) → ¬ 𝑧𝐵)
2517, 24sylan 582 . . . . . . . . 9 ((𝜑𝑧𝐴) → ¬ 𝑧𝐵)
26 nelne1 3113 . . . . . . . . . 10 ((𝑧𝐴 ∧ ¬ 𝑧𝐵) → 𝐴𝐵)
2726adantll 712 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ ¬ 𝑧𝐵) → 𝐴𝐵)
2825, 27mpdan 685 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝐴𝐵)
2928adantlr 713 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑧𝐴) → 𝐴𝐵)
3023, 29exlimddv 1932 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝐵)
31 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
32 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
3331, 32disjprgw 5060 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴𝐵) = ∅))
3419, 20, 30, 33syl3anc 1367 . . . . 5 ((𝜑𝐴 ≠ ∅) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴𝐵) = ∅))
3518, 34mpbird 259 . . . 4 ((𝜑𝐴 ≠ ∅) → Disj 𝑦 ∈ {𝐴, 𝐵}𝑦)
36 breq1 5068 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → (𝑧 ≼ ω ↔ {𝐴, 𝐵} ≼ ω))
37 disjeq1 5037 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → (Disj 𝑦𝑧 𝑦Disj 𝑦 ∈ {𝐴, 𝐵}𝑦))
3836, 37anbi12d 632 . . . . . . 7 (𝑧 = {𝐴, 𝐵} → ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) ↔ ({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦)))
39 unieq 4848 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → 𝑧 = {𝐴, 𝐵})
4039eleq1d 2897 . . . . . . 7 (𝑧 = {𝐴, 𝐵} → ( 𝑧𝑆 {𝐴, 𝐵} ∈ 𝑆))
4138, 40imbi12d 347 . . . . . 6 (𝑧 = {𝐴, 𝐵} → (((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆) ↔ (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆)))
42 unelldsys.s . . . . . . . . 9 (𝜑𝑆𝐿)
43 isldsys.l . . . . . . . . . . 11 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
44 biid 263 . . . . . . . . . . . . 13 (∅ ∈ 𝑠 ↔ ∅ ∈ 𝑠)
45 difeq2 4092 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑂𝑥) = (𝑂𝑧))
4645eleq1d 2897 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑧) ∈ 𝑠))
4746cbvralvw 3449 . . . . . . . . . . . . 13 (∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ↔ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠)
48 breq1 5068 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω))
49 disjeq1 5037 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (Disj 𝑦𝑥 𝑦Disj 𝑦𝑧 𝑦))
5048, 49anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)))
51 unieq 4848 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 𝑥 = 𝑧)
5251eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ( 𝑥𝑠 𝑧𝑠))
5350, 52imbi12d 347 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠)))
5453cbvralvw 3449 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))
5544, 47, 543anbi123i 1151 . . . . . . . . . . . 12 ((∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠)))
5655rabbii 3473 . . . . . . . . . . 11 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))}
5743, 56eqtri 2844 . . . . . . . . . 10 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))}
5857isldsys 31415 . . . . . . . . 9 (𝑆𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))))
5942, 58sylib 220 . . . . . . . 8 (𝜑 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))))
6059simprd 498 . . . . . . 7 (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆)))
6160simp3d 1140 . . . . . 6 (𝜑 → ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))
62 prelpwi 5339 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
6310, 7, 62syl2anc 586 . . . . . 6 (𝜑 → {𝐴, 𝐵} ∈ 𝒫 𝑆)
6441, 61, 63rspcdva 3624 . . . . 5 (𝜑 → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆))
6564adantr 483 . . . 4 ((𝜑𝐴 ≠ ∅) → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆))
6616, 35, 65mp2and 697 . . 3 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} ∈ 𝑆)
6713, 66eqeltrrd 2914 . 2 ((𝜑𝐴 ≠ ∅) → (𝐴𝐵) ∈ 𝑆)
689, 67pm2.61dane 3104 1 (𝜑 → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  {crab 3142  cdif 3932  cun 3933  cin 3934  c0 4290  𝒫 cpw 4538  {cpr 4568   cuni 4837  Disj wdisj 5030   class class class wbr 5065  ωcom 7579  cdom 8506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-oi 8973  df-dju 9329  df-card 9367
This theorem is referenced by:  ldgenpisyslem1  31422
  Copyright terms: Public domain W3C validator