Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelldsys Structured version   Visualization version   GIF version

Theorem unelldsys 31527
Description: Lambda-systems are closed under disjoint set unions. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Hypotheses
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
unelldsys.s (𝜑𝑆𝐿)
unelldsys.a (𝜑𝐴𝑆)
unelldsys.b (𝜑𝐵𝑆)
unelldsys.c (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
unelldsys (𝜑 → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥   𝑆,𝑠,𝑥   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑠)   𝑆(𝑦)   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)

Proof of Theorem unelldsys
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 uneq1 4083 . . . . 5 (𝐴 = ∅ → (𝐴𝐵) = (∅ ∪ 𝐵))
21adantl 485 . . . 4 ((𝜑𝐴 = ∅) → (𝐴𝐵) = (∅ ∪ 𝐵))
3 uncom 4080 . . . . 5 (𝐵 ∪ ∅) = (∅ ∪ 𝐵)
4 un0 4298 . . . . 5 (𝐵 ∪ ∅) = 𝐵
53, 4eqtr3i 2823 . . . 4 (∅ ∪ 𝐵) = 𝐵
62, 5eqtrdi 2849 . . 3 ((𝜑𝐴 = ∅) → (𝐴𝐵) = 𝐵)
7 unelldsys.b . . . 4 (𝜑𝐵𝑆)
87adantr 484 . . 3 ((𝜑𝐴 = ∅) → 𝐵𝑆)
96, 8eqeltrd 2890 . 2 ((𝜑𝐴 = ∅) → (𝐴𝐵) ∈ 𝑆)
10 unelldsys.a . . . . 5 (𝜑𝐴𝑆)
11 uniprg 4818 . . . . 5 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
1210, 7, 11syl2anc 587 . . . 4 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
1312adantr 484 . . 3 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} = (𝐴𝐵))
14 prct 30476 . . . . . 6 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
1510, 7, 14syl2anc 587 . . . . 5 (𝜑 → {𝐴, 𝐵} ≼ ω)
1615adantr 484 . . . 4 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} ≼ ω)
17 unelldsys.c . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
1817adantr 484 . . . . 5 ((𝜑𝐴 ≠ ∅) → (𝐴𝐵) = ∅)
1910adantr 484 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝑆)
207adantr 484 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐵𝑆)
21 n0 4260 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2221biimpi 219 . . . . . . . 8 (𝐴 ≠ ∅ → ∃𝑧 𝑧𝐴)
2322adantl 485 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → ∃𝑧 𝑧𝐴)
24 disjel 4364 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑧𝐴) → ¬ 𝑧𝐵)
2517, 24sylan 583 . . . . . . . . 9 ((𝜑𝑧𝐴) → ¬ 𝑧𝐵)
26 nelne1 3083 . . . . . . . . . 10 ((𝑧𝐴 ∧ ¬ 𝑧𝐵) → 𝐴𝐵)
2726adantll 713 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ ¬ 𝑧𝐵) → 𝐴𝐵)
2825, 27mpdan 686 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝐴𝐵)
2928adantlr 714 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑧𝐴) → 𝐴𝐵)
3023, 29exlimddv 1936 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝐵)
31 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
32 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
3331, 32disjprgw 5025 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴𝐵) = ∅))
3419, 20, 30, 33syl3anc 1368 . . . . 5 ((𝜑𝐴 ≠ ∅) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴𝐵) = ∅))
3518, 34mpbird 260 . . . 4 ((𝜑𝐴 ≠ ∅) → Disj 𝑦 ∈ {𝐴, 𝐵}𝑦)
36 breq1 5033 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → (𝑧 ≼ ω ↔ {𝐴, 𝐵} ≼ ω))
37 disjeq1 5002 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → (Disj 𝑦𝑧 𝑦Disj 𝑦 ∈ {𝐴, 𝐵}𝑦))
3836, 37anbi12d 633 . . . . . . 7 (𝑧 = {𝐴, 𝐵} → ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) ↔ ({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦)))
39 unieq 4811 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → 𝑧 = {𝐴, 𝐵})
4039eleq1d 2874 . . . . . . 7 (𝑧 = {𝐴, 𝐵} → ( 𝑧𝑆 {𝐴, 𝐵} ∈ 𝑆))
4138, 40imbi12d 348 . . . . . 6 (𝑧 = {𝐴, 𝐵} → (((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆) ↔ (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆)))
42 unelldsys.s . . . . . . . . 9 (𝜑𝑆𝐿)
43 isldsys.l . . . . . . . . . . 11 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
44 biid 264 . . . . . . . . . . . . 13 (∅ ∈ 𝑠 ↔ ∅ ∈ 𝑠)
45 difeq2 4044 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑂𝑥) = (𝑂𝑧))
4645eleq1d 2874 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑧) ∈ 𝑠))
4746cbvralvw 3396 . . . . . . . . . . . . 13 (∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ↔ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠)
48 breq1 5033 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω))
49 disjeq1 5002 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (Disj 𝑦𝑥 𝑦Disj 𝑦𝑧 𝑦))
5048, 49anbi12d 633 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)))
51 unieq 4811 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 𝑥 = 𝑧)
5251eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ( 𝑥𝑠 𝑧𝑠))
5350, 52imbi12d 348 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠)))
5453cbvralvw 3396 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))
5544, 47, 543anbi123i 1152 . . . . . . . . . . . 12 ((∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠)))
5655rabbii 3420 . . . . . . . . . . 11 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))}
5743, 56eqtri 2821 . . . . . . . . . 10 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))}
5857isldsys 31525 . . . . . . . . 9 (𝑆𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))))
5942, 58sylib 221 . . . . . . . 8 (𝜑 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))))
6059simprd 499 . . . . . . 7 (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆)))
6160simp3d 1141 . . . . . 6 (𝜑 → ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))
62 prelpwi 5305 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
6310, 7, 62syl2anc 587 . . . . . 6 (𝜑 → {𝐴, 𝐵} ∈ 𝒫 𝑆)
6441, 61, 63rspcdva 3573 . . . . 5 (𝜑 → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆))
6564adantr 484 . . . 4 ((𝜑𝐴 ≠ ∅) → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆))
6616, 35, 65mp2and 698 . . 3 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} ∈ 𝑆)
6713, 66eqeltrrd 2891 . 2 ((𝜑𝐴 ≠ ∅) → (𝐴𝐵) ∈ 𝑆)
689, 67pm2.61dane 3074 1 (𝜑 → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  {crab 3110  cdif 3878  cun 3879  cin 3880  c0 4243  𝒫 cpw 4497  {cpr 4527   cuni 4800  Disj wdisj 4995   class class class wbr 5030  ωcom 7560  cdom 8490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-dju 9314  df-card 9352
This theorem is referenced by:  ldgenpisyslem1  31532
  Copyright terms: Public domain W3C validator