Step | Hyp | Ref
| Expression |
1 | | uneq1 4090 |
. . . . 5
⊢ (𝐴 = ∅ → (𝐴 ∪ 𝐵) = (∅ ∪ 𝐵)) |
2 | 1 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝐴 ∪ 𝐵) = (∅ ∪ 𝐵)) |
3 | | uncom 4087 |
. . . . 5
⊢ (𝐵 ∪ ∅) = (∅ ∪
𝐵) |
4 | | un0 4324 |
. . . . 5
⊢ (𝐵 ∪ ∅) = 𝐵 |
5 | 3, 4 | eqtr3i 2768 |
. . . 4
⊢ (∅
∪ 𝐵) = 𝐵 |
6 | 2, 5 | eqtrdi 2794 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝐴 ∪ 𝐵) = 𝐵) |
7 | | unelldsys.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
8 | 7 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐵 ∈ 𝑆) |
9 | 6, 8 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝐴 ∪ 𝐵) ∈ 𝑆) |
10 | | unelldsys.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
11 | | uniprg 4856 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
12 | 10, 7, 11 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
13 | 12 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
14 | | prct 31049 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ≼ ω) |
15 | 10, 7, 14 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → {𝐴, 𝐵} ≼ ω) |
16 | 15 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → {𝐴, 𝐵} ≼ ω) |
17 | | unelldsys.c |
. . . . . 6
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
18 | 17 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (𝐴 ∩ 𝐵) = ∅) |
19 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝑆) |
20 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝑆) |
21 | | n0 4280 |
. . . . . . . . 9
⊢ (𝐴 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝐴) |
22 | 21 | biimpi 215 |
. . . . . . . 8
⊢ (𝐴 ≠ ∅ →
∃𝑧 𝑧 ∈ 𝐴) |
23 | 22 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑧 𝑧 ∈ 𝐴) |
24 | | disjel 4390 |
. . . . . . . . . 10
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑧 ∈ 𝐴) → ¬ 𝑧 ∈ 𝐵) |
25 | 17, 24 | sylan 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ¬ 𝑧 ∈ 𝐵) |
26 | | nelne1 3041 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵) → 𝐴 ≠ 𝐵) |
27 | 26 | adantll 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 ∈ 𝐵) → 𝐴 ≠ 𝐵) |
28 | 25, 27 | mpdan 684 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐴 ≠ 𝐵) |
29 | 28 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑧 ∈ 𝐴) → 𝐴 ≠ 𝐵) |
30 | 23, 29 | exlimddv 1938 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ 𝐵) |
31 | | id 22 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) |
32 | | id 22 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) |
33 | 31, 32 | disjprgw 5069 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴 ∩ 𝐵) = ∅)) |
34 | 19, 20, 30, 33 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴 ∩ 𝐵) = ∅)) |
35 | 18, 34 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) |
36 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑧 = {𝐴, 𝐵} → (𝑧 ≼ ω ↔ {𝐴, 𝐵} ≼ ω)) |
37 | | disjeq1 5046 |
. . . . . . . 8
⊢ (𝑧 = {𝐴, 𝐵} → (Disj 𝑦 ∈ 𝑧 𝑦 ↔ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦)) |
38 | 36, 37 | anbi12d 631 |
. . . . . . 7
⊢ (𝑧 = {𝐴, 𝐵} → ((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) ↔ ({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦))) |
39 | | unieq 4850 |
. . . . . . . 8
⊢ (𝑧 = {𝐴, 𝐵} → ∪ 𝑧 = ∪
{𝐴, 𝐵}) |
40 | 39 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑧 = {𝐴, 𝐵} → (∪ 𝑧 ∈ 𝑆 ↔ ∪ {𝐴, 𝐵} ∈ 𝑆)) |
41 | 38, 40 | imbi12d 345 |
. . . . . 6
⊢ (𝑧 = {𝐴, 𝐵} → (((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑆) ↔ (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → ∪ {𝐴, 𝐵} ∈ 𝑆))) |
42 | | unelldsys.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ 𝐿) |
43 | | isldsys.l |
. . . . . . . . . . 11
⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
44 | | biid 260 |
. . . . . . . . . . . . 13
⊢ (∅
∈ 𝑠 ↔ ∅
∈ 𝑠) |
45 | | difeq2 4051 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑂 ∖ 𝑥) = (𝑂 ∖ 𝑧)) |
46 | 45 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑂 ∖ 𝑥) ∈ 𝑠 ↔ (𝑂 ∖ 𝑧) ∈ 𝑠)) |
47 | 46 | cbvralvw 3383 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ↔ ∀𝑧 ∈ 𝑠 (𝑂 ∖ 𝑧) ∈ 𝑠) |
48 | | breq1 5077 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω)) |
49 | | disjeq1 5046 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ 𝑧 𝑦)) |
50 | 48, 49 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦))) |
51 | | unieq 4850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ∪ 𝑥 = ∪
𝑧) |
52 | 51 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑧 ∈ 𝑠)) |
53 | 50, 52 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑠))) |
54 | 53 | cbvralvw 3383 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝒫 𝑠((𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠) ↔ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑠)) |
55 | 44, 47, 54 | 3anbi123i 1154 |
. . . . . . . . . . . 12
⊢ ((∅
∈ 𝑠 ∧
∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑠 (𝑂 ∖ 𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑠))) |
56 | 55 | rabbii 3408 |
. . . . . . . . . . 11
⊢ {𝑠 ∈ 𝒫 𝒫
𝑂 ∣ (∅ ∈
𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑠 (𝑂 ∖ 𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑠))} |
57 | 43, 56 | eqtri 2766 |
. . . . . . . . . 10
⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑠 (𝑂 ∖ 𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑠))} |
58 | 57 | isldsys 32124 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 (𝑂 ∖ 𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑆)))) |
59 | 42, 58 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 (𝑂 ∖ 𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑆)))) |
60 | 59 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 (𝑂 ∖ 𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑆))) |
61 | 60 | simp3d 1143 |
. . . . . 6
⊢ (𝜑 → ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑆)) |
62 | | prelpwi 5363 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) |
63 | 10, 7, 62 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝒫 𝑆) |
64 | 41, 61, 63 | rspcdva 3562 |
. . . . 5
⊢ (𝜑 → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → ∪ {𝐴, 𝐵} ∈ 𝑆)) |
65 | 64 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → ∪ {𝐴, 𝐵} ∈ 𝑆)) |
66 | 16, 35, 65 | mp2and 696 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∪ {𝐴,
𝐵} ∈ 𝑆) |
67 | 13, 66 | eqeltrrd 2840 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (𝐴 ∪ 𝐵) ∈ 𝑆) |
68 | 9, 67 | pm2.61dane 3032 |
1
⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑆) |