Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelldsys Structured version   Visualization version   GIF version

Theorem unelldsys 32026
Description: Lambda-systems are closed under disjoint set unions. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Hypotheses
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
unelldsys.s (𝜑𝑆𝐿)
unelldsys.a (𝜑𝐴𝑆)
unelldsys.b (𝜑𝐵𝑆)
unelldsys.c (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
unelldsys (𝜑 → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥   𝑆,𝑠,𝑥   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑠)   𝑆(𝑦)   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)

Proof of Theorem unelldsys
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 uneq1 4086 . . . . 5 (𝐴 = ∅ → (𝐴𝐵) = (∅ ∪ 𝐵))
21adantl 481 . . . 4 ((𝜑𝐴 = ∅) → (𝐴𝐵) = (∅ ∪ 𝐵))
3 uncom 4083 . . . . 5 (𝐵 ∪ ∅) = (∅ ∪ 𝐵)
4 un0 4321 . . . . 5 (𝐵 ∪ ∅) = 𝐵
53, 4eqtr3i 2768 . . . 4 (∅ ∪ 𝐵) = 𝐵
62, 5eqtrdi 2795 . . 3 ((𝜑𝐴 = ∅) → (𝐴𝐵) = 𝐵)
7 unelldsys.b . . . 4 (𝜑𝐵𝑆)
87adantr 480 . . 3 ((𝜑𝐴 = ∅) → 𝐵𝑆)
96, 8eqeltrd 2839 . 2 ((𝜑𝐴 = ∅) → (𝐴𝐵) ∈ 𝑆)
10 unelldsys.a . . . . 5 (𝜑𝐴𝑆)
11 uniprg 4853 . . . . 5 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
1210, 7, 11syl2anc 583 . . . 4 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
1312adantr 480 . . 3 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} = (𝐴𝐵))
14 prct 30951 . . . . . 6 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
1510, 7, 14syl2anc 583 . . . . 5 (𝜑 → {𝐴, 𝐵} ≼ ω)
1615adantr 480 . . . 4 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} ≼ ω)
17 unelldsys.c . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
1817adantr 480 . . . . 5 ((𝜑𝐴 ≠ ∅) → (𝐴𝐵) = ∅)
1910adantr 480 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝑆)
207adantr 480 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐵𝑆)
21 n0 4277 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2221biimpi 215 . . . . . . . 8 (𝐴 ≠ ∅ → ∃𝑧 𝑧𝐴)
2322adantl 481 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → ∃𝑧 𝑧𝐴)
24 disjel 4387 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑧𝐴) → ¬ 𝑧𝐵)
2517, 24sylan 579 . . . . . . . . 9 ((𝜑𝑧𝐴) → ¬ 𝑧𝐵)
26 nelne1 3040 . . . . . . . . . 10 ((𝑧𝐴 ∧ ¬ 𝑧𝐵) → 𝐴𝐵)
2726adantll 710 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ ¬ 𝑧𝐵) → 𝐴𝐵)
2825, 27mpdan 683 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝐴𝐵)
2928adantlr 711 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑧𝐴) → 𝐴𝐵)
3023, 29exlimddv 1939 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝐵)
31 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
32 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
3331, 32disjprgw 5065 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴𝐵) = ∅))
3419, 20, 30, 33syl3anc 1369 . . . . 5 ((𝜑𝐴 ≠ ∅) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴𝐵) = ∅))
3518, 34mpbird 256 . . . 4 ((𝜑𝐴 ≠ ∅) → Disj 𝑦 ∈ {𝐴, 𝐵}𝑦)
36 breq1 5073 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → (𝑧 ≼ ω ↔ {𝐴, 𝐵} ≼ ω))
37 disjeq1 5042 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → (Disj 𝑦𝑧 𝑦Disj 𝑦 ∈ {𝐴, 𝐵}𝑦))
3836, 37anbi12d 630 . . . . . . 7 (𝑧 = {𝐴, 𝐵} → ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) ↔ ({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦)))
39 unieq 4847 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → 𝑧 = {𝐴, 𝐵})
4039eleq1d 2823 . . . . . . 7 (𝑧 = {𝐴, 𝐵} → ( 𝑧𝑆 {𝐴, 𝐵} ∈ 𝑆))
4138, 40imbi12d 344 . . . . . 6 (𝑧 = {𝐴, 𝐵} → (((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆) ↔ (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆)))
42 unelldsys.s . . . . . . . . 9 (𝜑𝑆𝐿)
43 isldsys.l . . . . . . . . . . 11 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
44 biid 260 . . . . . . . . . . . . 13 (∅ ∈ 𝑠 ↔ ∅ ∈ 𝑠)
45 difeq2 4047 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑂𝑥) = (𝑂𝑧))
4645eleq1d 2823 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑧) ∈ 𝑠))
4746cbvralvw 3372 . . . . . . . . . . . . 13 (∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ↔ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠)
48 breq1 5073 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω))
49 disjeq1 5042 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (Disj 𝑦𝑥 𝑦Disj 𝑦𝑧 𝑦))
5048, 49anbi12d 630 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)))
51 unieq 4847 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 𝑥 = 𝑧)
5251eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ( 𝑥𝑠 𝑧𝑠))
5350, 52imbi12d 344 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠)))
5453cbvralvw 3372 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))
5544, 47, 543anbi123i 1153 . . . . . . . . . . . 12 ((∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠)))
5655rabbii 3397 . . . . . . . . . . 11 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))}
5743, 56eqtri 2766 . . . . . . . . . 10 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))}
5857isldsys 32024 . . . . . . . . 9 (𝑆𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))))
5942, 58sylib 217 . . . . . . . 8 (𝜑 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))))
6059simprd 495 . . . . . . 7 (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆)))
6160simp3d 1142 . . . . . 6 (𝜑 → ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))
62 prelpwi 5357 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
6310, 7, 62syl2anc 583 . . . . . 6 (𝜑 → {𝐴, 𝐵} ∈ 𝒫 𝑆)
6441, 61, 63rspcdva 3554 . . . . 5 (𝜑 → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆))
6564adantr 480 . . . 4 ((𝜑𝐴 ≠ ∅) → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆))
6616, 35, 65mp2and 695 . . 3 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} ∈ 𝑆)
6713, 66eqeltrrd 2840 . 2 ((𝜑𝐴 ≠ ∅) → (𝐴𝐵) ∈ 𝑆)
689, 67pm2.61dane 3031 1 (𝜑 → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  {crab 3067  cdif 3880  cun 3881  cin 3882  c0 4253  𝒫 cpw 4530  {cpr 4560   cuni 4836  Disj wdisj 5035   class class class wbr 5070  ωcom 7687  cdom 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-dju 9590  df-card 9628
This theorem is referenced by:  ldgenpisyslem1  32031
  Copyright terms: Public domain W3C validator