![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disj3 | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
disj3 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 559 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
2 | eldif 3959 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 2 | bibi2i 338 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
4 | 1, 3 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
5 | 4 | albii 1822 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
6 | disj1 4451 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
7 | dfcleq 2726 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∖ cdif 3946 ∩ cin 3948 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-v 3477 df-dif 3952 df-in 3956 df-nul 4324 |
This theorem is referenced by: disjel 4457 disj4 4459 uneqdifeq 4493 difprsn1 4804 diftpsn3 4806 ssunsn2 4831 orddif 6461 php 9210 phpOLD 9222 hartogslem1 9537 infeq5i 9631 cantnfp1lem3 9675 dju1dif 10167 infdju1 10184 ssxr 11283 dprd2da 19912 dmdprdsplit2lem 19915 ablfac1eulem 19942 lbsextlem4 20774 opsrtoslem2 21617 alexsublem 23548 volun 25062 lhop1lem 25530 ex-dif 29707 difeq 31787 imadifxp 31863 disjdsct 31955 fzodif1 32035 carsgclctunlem1 33347 probun 33449 ballotlemfp1 33521 bj-disj2r 35957 topdifinfeq 36279 finixpnum 36521 lindsadd 36529 poimirlem11 36547 poimirlem12 36548 poimirlem13 36549 poimirlem14 36550 poimirlem16 36552 poimirlem18 36554 poimirlem21 36557 poimirlem22 36558 poimirlem27 36563 asindmre 36619 kelac2 41855 pwfi2f1o 41886 iccdifioo 44276 iccdifprioo 44277 |
Copyright terms: Public domain | W3C validator |