MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj3 Structured version   Visualization version   GIF version

Theorem disj3 4399
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
disj3 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))

Proof of Theorem disj3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.71 557 . . . 4 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
2 eldif 3907 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32bibi2i 337 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
41, 3bitr4i 278 . . 3 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐴𝐵)))
54albii 1820 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
6 disj1 4397 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
7 dfcleq 2724 . 2 (𝐴 = (𝐴𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
85, 6, 73bitr4i 303 1 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  cdif 3894  cin 3896  c0 4278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-dif 3900  df-in 3904  df-nul 4279
This theorem is referenced by:  disjel  4402  disj4  4404  uneqdifeq  4438  difprsn1  4747  diftpsn3  4749  ssunsn2  4774  orddif  6399  php  9111  hartogslem1  9423  infeq5i  9521  cantnfp1lem3  9565  dju1dif  10059  infdju1  10076  ssxr  11177  dprd2da  19951  dmdprdsplit2lem  19954  ablfac1eulem  19981  lbsextlem4  21093  opsrtoslem2  21986  alexsublem  23954  volun  25468  lhop1lem  25940  ex-dif  30395  difeq  32490  imadifxp  32573  disjdsct  32676  fzodif1  32767  carsgclctunlem1  34322  probun  34424  ballotlemfp1  34497  bj-disj2r  37062  topdifinfeq  37384  finixpnum  37645  lindsadd  37653  poimirlem11  37671  poimirlem12  37672  poimirlem13  37673  poimirlem14  37674  poimirlem16  37676  poimirlem18  37678  poimirlem21  37681  poimirlem22  37682  poimirlem27  37687  asindmre  37743  kelac2  43098  pwfi2f1o  43129  iccdifioo  45555  iccdifprioo  45556
  Copyright terms: Public domain W3C validator