| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj3 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| disj3 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 557 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 2 | eldif 3913 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 2 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 5 | 4 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 6 | disj1 4403 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 7 | dfcleq 2722 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ∩ cin 3902 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3438 df-dif 3906 df-in 3910 df-nul 4285 |
| This theorem is referenced by: disjel 4408 disj4 4410 uneqdifeq 4444 difprsn1 4751 diftpsn3 4753 ssunsn2 4778 orddif 6405 php 9121 hartogslem1 9434 infeq5i 9532 cantnfp1lem3 9576 dju1dif 10067 infdju1 10084 ssxr 11185 dprd2da 19923 dmdprdsplit2lem 19926 ablfac1eulem 19953 lbsextlem4 21068 opsrtoslem2 21961 alexsublem 23929 volun 25444 lhop1lem 25916 ex-dif 30367 difeq 32462 imadifxp 32545 disjdsct 32645 fzodif1 32735 carsgclctunlem1 34285 probun 34387 ballotlemfp1 34460 bj-disj2r 37002 topdifinfeq 37324 finixpnum 37585 lindsadd 37593 poimirlem11 37611 poimirlem12 37612 poimirlem13 37613 poimirlem14 37614 poimirlem16 37616 poimirlem18 37618 poimirlem21 37621 poimirlem22 37622 poimirlem27 37627 asindmre 37683 kelac2 43038 pwfi2f1o 43069 iccdifioo 45496 iccdifprioo 45497 |
| Copyright terms: Public domain | W3C validator |