MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj3 Structured version   Visualization version   GIF version

Theorem disj3 4454
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
disj3 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))

Proof of Theorem disj3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.71 559 . . . 4 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
2 eldif 3959 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32bibi2i 338 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
41, 3bitr4i 278 . . 3 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐴𝐵)))
54albii 1822 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
6 disj1 4451 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
7 dfcleq 2726 . 2 (𝐴 = (𝐴𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
85, 6, 73bitr4i 303 1 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wcel 2107  cdif 3946  cin 3948  c0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-v 3477  df-dif 3952  df-in 3956  df-nul 4324
This theorem is referenced by:  disjel  4457  disj4  4459  uneqdifeq  4493  difprsn1  4804  diftpsn3  4806  ssunsn2  4831  orddif  6461  php  9210  phpOLD  9222  hartogslem1  9537  infeq5i  9631  cantnfp1lem3  9675  dju1dif  10167  infdju1  10184  ssxr  11283  dprd2da  19912  dmdprdsplit2lem  19915  ablfac1eulem  19942  lbsextlem4  20774  opsrtoslem2  21617  alexsublem  23548  volun  25062  lhop1lem  25530  ex-dif  29707  difeq  31787  imadifxp  31863  disjdsct  31955  fzodif1  32035  carsgclctunlem1  33347  probun  33449  ballotlemfp1  33521  bj-disj2r  35957  topdifinfeq  36279  finixpnum  36521  lindsadd  36529  poimirlem11  36547  poimirlem12  36548  poimirlem13  36549  poimirlem14  36550  poimirlem16  36552  poimirlem18  36554  poimirlem21  36557  poimirlem22  36558  poimirlem27  36563  asindmre  36619  kelac2  41855  pwfi2f1o  41886  iccdifioo  44276  iccdifprioo  44277
  Copyright terms: Public domain W3C validator