MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj3 Structured version   Visualization version   GIF version

Theorem disj3 4420
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
disj3 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))

Proof of Theorem disj3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.71 557 . . . 4 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
2 eldif 3927 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32bibi2i 337 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
41, 3bitr4i 278 . . 3 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐴𝐵)))
54albii 1819 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
6 disj1 4418 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
7 dfcleq 2723 . 2 (𝐴 = (𝐴𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
85, 6, 73bitr4i 303 1 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  cdif 3914  cin 3916  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-dif 3920  df-in 3924  df-nul 4300
This theorem is referenced by:  disjel  4423  disj4  4425  uneqdifeq  4459  difprsn1  4767  diftpsn3  4769  ssunsn2  4794  orddif  6433  php  9177  hartogslem1  9502  infeq5i  9596  cantnfp1lem3  9640  dju1dif  10133  infdju1  10150  ssxr  11250  dprd2da  19981  dmdprdsplit2lem  19984  ablfac1eulem  20011  lbsextlem4  21078  opsrtoslem2  21970  alexsublem  23938  volun  25453  lhop1lem  25925  ex-dif  30359  difeq  32454  imadifxp  32537  disjdsct  32633  fzodif1  32722  carsgclctunlem1  34315  probun  34417  ballotlemfp1  34490  bj-disj2r  37023  topdifinfeq  37345  finixpnum  37606  lindsadd  37614  poimirlem11  37632  poimirlem12  37633  poimirlem13  37634  poimirlem14  37635  poimirlem16  37637  poimirlem18  37639  poimirlem21  37642  poimirlem22  37643  poimirlem27  37648  asindmre  37704  kelac2  43061  pwfi2f1o  43092  iccdifioo  45520  iccdifprioo  45521
  Copyright terms: Public domain W3C validator