Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disj3 | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
disj3 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 558 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
2 | eldif 3902 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 2 | bibi2i 338 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
4 | 1, 3 | bitr4i 277 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
5 | 4 | albii 1826 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
6 | disj1 4390 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
7 | dfcleq 2733 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1540 = wceq 1542 ∈ wcel 2110 ∖ cdif 3889 ∩ cin 3891 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-v 3433 df-dif 3895 df-in 3899 df-nul 4263 |
This theorem is referenced by: disjel 4396 disj4 4398 uneqdifeq 4429 difprsn1 4739 diftpsn3 4741 ssunsn2 4766 orddif 6358 php 8983 phpOLD 8995 hartogslem1 9289 infeq5i 9382 cantnfp1lem3 9426 dju1dif 9939 infdju1 9956 ssxr 11055 dprd2da 19656 dmdprdsplit2lem 19659 ablfac1eulem 19686 lbsextlem4 20434 opsrtoslem2 21274 alexsublem 23206 volun 24720 lhop1lem 25188 ex-dif 28796 difeq 30874 imadifxp 30949 disjdsct 31044 fzodif1 31123 carsgclctunlem1 32293 probun 32395 ballotlemfp1 32467 bj-disj2r 35227 topdifinfeq 35530 finixpnum 35771 lindsadd 35779 poimirlem11 35797 poimirlem12 35798 poimirlem13 35799 poimirlem14 35800 poimirlem16 35802 poimirlem18 35804 poimirlem21 35807 poimirlem22 35808 poimirlem27 35813 asindmre 35869 kelac2 40899 pwfi2f1o 40930 iccdifioo 43035 iccdifprioo 43036 |
Copyright terms: Public domain | W3C validator |