| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj3 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| disj3 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 557 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 2 | eldif 3924 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 2 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 5 | 4 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 6 | disj1 4415 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 7 | dfcleq 2722 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∩ cin 3913 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-dif 3917 df-in 3921 df-nul 4297 |
| This theorem is referenced by: disjel 4420 disj4 4422 uneqdifeq 4456 difprsn1 4764 diftpsn3 4766 ssunsn2 4791 orddif 6430 php 9171 hartogslem1 9495 infeq5i 9589 cantnfp1lem3 9633 dju1dif 10126 infdju1 10143 ssxr 11243 dprd2da 19974 dmdprdsplit2lem 19977 ablfac1eulem 20004 lbsextlem4 21071 opsrtoslem2 21963 alexsublem 23931 volun 25446 lhop1lem 25918 ex-dif 30352 difeq 32447 imadifxp 32530 disjdsct 32626 fzodif1 32715 carsgclctunlem1 34308 probun 34410 ballotlemfp1 34483 bj-disj2r 37016 topdifinfeq 37338 finixpnum 37599 lindsadd 37607 poimirlem11 37625 poimirlem12 37626 poimirlem13 37627 poimirlem14 37628 poimirlem16 37630 poimirlem18 37632 poimirlem21 37635 poimirlem22 37636 poimirlem27 37641 asindmre 37697 kelac2 43054 pwfi2f1o 43085 iccdifioo 45513 iccdifprioo 45514 |
| Copyright terms: Public domain | W3C validator |