![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disj3 | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
disj3 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 556 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
2 | eldif 3954 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 2 | bibi2i 336 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
4 | 1, 3 | bitr4i 277 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
5 | 4 | albii 1813 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
6 | disj1 4452 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
7 | dfcleq 2718 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
8 | 5, 6, 7 | 3bitr4i 302 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 ∩ cin 3943 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-v 3463 df-dif 3947 df-in 3951 df-nul 4323 |
This theorem is referenced by: disjel 4458 disj4 4460 uneqdifeq 4494 difprsn1 4805 diftpsn3 4807 ssunsn2 4832 orddif 6467 php 9235 phpOLD 9247 hartogslem1 9567 infeq5i 9661 cantnfp1lem3 9705 dju1dif 10197 infdju1 10214 ssxr 11315 dprd2da 20011 dmdprdsplit2lem 20014 ablfac1eulem 20041 lbsextlem4 21061 opsrtoslem2 22022 alexsublem 23992 volun 25518 lhop1lem 25990 ex-dif 30305 difeq 32394 imadifxp 32470 disjdsct 32564 fzodif1 32643 carsgclctunlem1 34065 probun 34167 ballotlemfp1 34239 bj-disj2r 36635 topdifinfeq 36957 finixpnum 37206 lindsadd 37214 poimirlem11 37232 poimirlem12 37233 poimirlem13 37234 poimirlem14 37235 poimirlem16 37237 poimirlem18 37239 poimirlem21 37242 poimirlem22 37243 poimirlem27 37248 asindmre 37304 kelac2 42628 pwfi2f1o 42659 iccdifioo 45035 iccdifprioo 45036 |
Copyright terms: Public domain | W3C validator |