MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj3 Structured version   Visualization version   GIF version

Theorem disj3 4405
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
disj3 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))

Proof of Theorem disj3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.71 557 . . . 4 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
2 eldif 3913 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32bibi2i 337 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
41, 3bitr4i 278 . . 3 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐴𝐵)))
54albii 1819 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
6 disj1 4403 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
7 dfcleq 2722 . 2 (𝐴 = (𝐴𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
85, 6, 73bitr4i 303 1 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  cdif 3900  cin 3902  c0 4284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3438  df-dif 3906  df-in 3910  df-nul 4285
This theorem is referenced by:  disjel  4408  disj4  4410  uneqdifeq  4444  difprsn1  4751  diftpsn3  4753  ssunsn2  4778  orddif  6405  php  9121  hartogslem1  9434  infeq5i  9532  cantnfp1lem3  9576  dju1dif  10067  infdju1  10084  ssxr  11185  dprd2da  19923  dmdprdsplit2lem  19926  ablfac1eulem  19953  lbsextlem4  21068  opsrtoslem2  21961  alexsublem  23929  volun  25444  lhop1lem  25916  ex-dif  30367  difeq  32462  imadifxp  32545  disjdsct  32645  fzodif1  32735  carsgclctunlem1  34285  probun  34387  ballotlemfp1  34460  bj-disj2r  37002  topdifinfeq  37324  finixpnum  37585  lindsadd  37593  poimirlem11  37611  poimirlem12  37612  poimirlem13  37613  poimirlem14  37614  poimirlem16  37616  poimirlem18  37618  poimirlem21  37621  poimirlem22  37622  poimirlem27  37627  asindmre  37683  kelac2  43038  pwfi2f1o  43069  iccdifioo  45496  iccdifprioo  45497
  Copyright terms: Public domain W3C validator