MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj3 Structured version   Visualization version   GIF version

Theorem disj3 4384
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
disj3 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))

Proof of Theorem disj3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.71 557 . . . 4 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
2 eldif 3893 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32bibi2i 337 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
41, 3bitr4i 277 . . 3 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐴𝐵)))
54albii 1823 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
6 disj1 4381 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
7 dfcleq 2731 . 2 (𝐴 = (𝐴𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
85, 6, 73bitr4i 302 1 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  cdif 3880  cin 3882  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-dif 3886  df-in 3890  df-nul 4254
This theorem is referenced by:  disjel  4387  disj4  4389  uneqdifeq  4420  difprsn1  4730  diftpsn3  4732  ssunsn2  4757  orddif  6344  php  8897  hartogslem1  9231  infeq5i  9324  cantnfp1lem3  9368  dju1dif  9859  infdju1  9876  ssxr  10975  dprd2da  19560  dmdprdsplit2lem  19563  ablfac1eulem  19590  lbsextlem4  20338  opsrtoslem2  21173  alexsublem  23103  volun  24614  lhop1lem  25082  ex-dif  28688  difeq  30766  imadifxp  30841  disjdsct  30937  fzodif1  31016  carsgclctunlem1  32184  probun  32286  ballotlemfp1  32358  bj-disj2r  35145  topdifinfeq  35448  finixpnum  35689  lindsadd  35697  poimirlem11  35715  poimirlem12  35716  poimirlem13  35717  poimirlem14  35718  poimirlem16  35720  poimirlem18  35722  poimirlem21  35725  poimirlem22  35726  poimirlem27  35731  asindmre  35787  kelac2  40806  pwfi2f1o  40837  iccdifioo  42943  iccdifprioo  42944
  Copyright terms: Public domain W3C validator