| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj3 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| disj3 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 557 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 2 | eldif 3936 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 2 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 5 | 4 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 6 | disj1 4427 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 7 | dfcleq 2728 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∩ cin 3925 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-dif 3929 df-in 3933 df-nul 4309 |
| This theorem is referenced by: disjel 4432 disj4 4434 uneqdifeq 4468 difprsn1 4776 diftpsn3 4778 ssunsn2 4803 orddif 6449 php 9219 phpOLD 9229 hartogslem1 9554 infeq5i 9648 cantnfp1lem3 9692 dju1dif 10185 infdju1 10202 ssxr 11302 dprd2da 20023 dmdprdsplit2lem 20026 ablfac1eulem 20053 lbsextlem4 21120 opsrtoslem2 22012 alexsublem 23980 volun 25496 lhop1lem 25968 ex-dif 30350 difeq 32445 imadifxp 32528 disjdsct 32626 fzodif1 32715 carsgclctunlem1 34295 probun 34397 ballotlemfp1 34470 bj-disj2r 36992 topdifinfeq 37314 finixpnum 37575 lindsadd 37583 poimirlem11 37601 poimirlem12 37602 poimirlem13 37603 poimirlem14 37604 poimirlem16 37606 poimirlem18 37608 poimirlem21 37611 poimirlem22 37612 poimirlem27 37617 asindmre 37673 kelac2 43036 pwfi2f1o 43067 iccdifioo 45492 iccdifprioo 45493 |
| Copyright terms: Public domain | W3C validator |