MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj3 Structured version   Visualization version   GIF version

Theorem disj3 4413
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
disj3 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))

Proof of Theorem disj3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.71 557 . . . 4 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
2 eldif 3921 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32bibi2i 337 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
41, 3bitr4i 278 . . 3 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐴𝐵)))
54albii 1819 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
6 disj1 4411 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
7 dfcleq 2722 . 2 (𝐴 = (𝐴𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴𝐵)))
85, 6, 73bitr4i 303 1 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  cdif 3908  cin 3910  c0 4292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3446  df-dif 3914  df-in 3918  df-nul 4293
This theorem is referenced by:  disjel  4416  disj4  4418  uneqdifeq  4452  difprsn1  4760  diftpsn3  4762  ssunsn2  4787  orddif  6418  php  9148  hartogslem1  9471  infeq5i  9565  cantnfp1lem3  9609  dju1dif  10102  infdju1  10119  ssxr  11219  dprd2da  19950  dmdprdsplit2lem  19953  ablfac1eulem  19980  lbsextlem4  21047  opsrtoslem2  21939  alexsublem  23907  volun  25422  lhop1lem  25894  ex-dif  30325  difeq  32420  imadifxp  32503  disjdsct  32599  fzodif1  32688  carsgclctunlem1  34281  probun  34383  ballotlemfp1  34456  bj-disj2r  36989  topdifinfeq  37311  finixpnum  37572  lindsadd  37580  poimirlem11  37598  poimirlem12  37599  poimirlem13  37600  poimirlem14  37601  poimirlem16  37603  poimirlem18  37605  poimirlem21  37608  poimirlem22  37609  poimirlem27  37614  asindmre  37670  kelac2  43027  pwfi2f1o  43058  iccdifioo  45486  iccdifprioo  45487
  Copyright terms: Public domain W3C validator