| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj3 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| disj3 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 557 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 2 | eldif 3921 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 2 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 5 | 4 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 6 | disj1 4411 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 7 | dfcleq 2722 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ∩ cin 3910 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3446 df-dif 3914 df-in 3918 df-nul 4293 |
| This theorem is referenced by: disjel 4416 disj4 4418 uneqdifeq 4452 difprsn1 4760 diftpsn3 4762 ssunsn2 4787 orddif 6418 php 9148 hartogslem1 9471 infeq5i 9565 cantnfp1lem3 9609 dju1dif 10102 infdju1 10119 ssxr 11219 dprd2da 19950 dmdprdsplit2lem 19953 ablfac1eulem 19980 lbsextlem4 21047 opsrtoslem2 21939 alexsublem 23907 volun 25422 lhop1lem 25894 ex-dif 30325 difeq 32420 imadifxp 32503 disjdsct 32599 fzodif1 32688 carsgclctunlem1 34281 probun 34383 ballotlemfp1 34456 bj-disj2r 36989 topdifinfeq 37311 finixpnum 37572 lindsadd 37580 poimirlem11 37598 poimirlem12 37599 poimirlem13 37600 poimirlem14 37601 poimirlem16 37603 poimirlem18 37605 poimirlem21 37608 poimirlem22 37609 poimirlem27 37614 asindmre 37670 kelac2 43027 pwfi2f1o 43058 iccdifioo 45486 iccdifprioo 45487 |
| Copyright terms: Public domain | W3C validator |