Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measinblem Structured version   Visualization version   GIF version

Theorem measinblem 30828
Description: Lemma for measinb 30829. (Contributed by Thierry Arnoux, 2-Jun-2017.)
Assertion
Ref Expression
measinblem ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥)) → (𝑀‘( 𝐵𝐴)) = Σ*𝑥𝐵(𝑀‘(𝑥𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆   𝑥,𝑀

Proof of Theorem measinblem
StepHypRef Expression
1 iunin1 4805 . . . 4 𝑥𝐵 (𝑥𝐴) = ( 𝑥𝐵 𝑥𝐴)
2 uniiun 4793 . . . . 5 𝐵 = 𝑥𝐵 𝑥
32ineq1i 4037 . . . 4 ( 𝐵𝐴) = ( 𝑥𝐵 𝑥𝐴)
41, 3eqtr4i 2852 . . 3 𝑥𝐵 (𝑥𝐴) = ( 𝐵𝐴)
54fveq2i 6436 . 2 (𝑀 𝑥𝐵 (𝑥𝐴)) = (𝑀‘( 𝐵𝐴))
6 simplll 793 . . 3 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥)) → 𝑀 ∈ (measures‘𝑆))
7 nfv 2015 . . . . 5 𝑥((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆)
8 nfv 2015 . . . . . 6 𝑥 𝐵 ≼ ω
9 nfdisj1 4854 . . . . . 6 𝑥Disj 𝑥𝐵 𝑥
108, 9nfan 2004 . . . . 5 𝑥(𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥)
117, 10nfan 2004 . . . 4 𝑥(((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥))
12 simp1ll 1323 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥) ∧ 𝑥𝐵) → 𝑀 ∈ (measures‘𝑆))
13 measbase 30805 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
1412, 13syl 17 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥) ∧ 𝑥𝐵) → 𝑆 ran sigAlgebra)
15 simp3 1174 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥) ∧ 𝑥𝐵) → 𝑥𝐵)
16 simp1r 1261 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥) ∧ 𝑥𝐵) → 𝐵 ∈ 𝒫 𝑆)
17 elelpwi 4391 . . . . . . 7 ((𝑥𝐵𝐵 ∈ 𝒫 𝑆) → 𝑥𝑆)
1815, 16, 17syl2anc 581 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥) ∧ 𝑥𝐵) → 𝑥𝑆)
19 simp1lr 1324 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥) ∧ 𝑥𝐵) → 𝐴𝑆)
20 inelsiga 30743 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑥𝑆𝐴𝑆) → (𝑥𝐴) ∈ 𝑆)
2114, 18, 19, 20syl3anc 1496 . . . . 5 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥) ∧ 𝑥𝐵) → (𝑥𝐴) ∈ 𝑆)
22213expia 1156 . . . 4 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥)) → (𝑥𝐵 → (𝑥𝐴) ∈ 𝑆))
2311, 22ralrimi 3166 . . 3 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥)) → ∀𝑥𝐵 (𝑥𝐴) ∈ 𝑆)
24 simprl 789 . . 3 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥)) → 𝐵 ≼ ω)
25 disjin 29946 . . . 4 (Disj 𝑥𝐵 𝑥Disj 𝑥𝐵 (𝑥𝐴))
2625ad2antll 722 . . 3 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥)) → Disj 𝑥𝐵 (𝑥𝐴))
27 measvuni 30822 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐵 (𝑥𝐴) ∈ 𝑆 ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 (𝑥𝐴))) → (𝑀 𝑥𝐵 (𝑥𝐴)) = Σ*𝑥𝐵(𝑀‘(𝑥𝐴)))
286, 23, 24, 26, 27syl112anc 1499 . 2 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥)) → (𝑀 𝑥𝐵 (𝑥𝐴)) = Σ*𝑥𝐵(𝑀‘(𝑥𝐴)))
295, 28syl5eqr 2875 1 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥)) → (𝑀‘( 𝐵𝐴)) = Σ*𝑥𝐵(𝑀‘(𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3117  cin 3797  𝒫 cpw 4378   cuni 4658   ciun 4740  Disj wdisj 4841   class class class wbr 4873  ran crn 5343  cfv 6123  ωcom 7326  cdom 8220  Σ*cesum 30634  sigAlgebracsiga 30715  measurescmeas 30803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-ac2 9600  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-disj 4842  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-acn 9081  df-ac 9252  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-ordt 16514  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-ps 17553  df-tsr 17554  df-plusf 17594  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mulg 17895  df-subg 17942  df-cntz 18100  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-subrg 19134  df-abv 19173  df-lmod 19221  df-scaf 19222  df-sra 19533  df-rgmod 19534  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-tmd 22246  df-tgp 22247  df-tsms 22300  df-trg 22333  df-xms 22495  df-ms 22496  df-tms 22497  df-nm 22757  df-ngp 22758  df-nrg 22760  df-nlm 22761  df-ii 23050  df-cncf 23051  df-limc 24029  df-dv 24030  df-log 24702  df-esum 30635  df-siga 30716  df-meas 30804
This theorem is referenced by:  measinb  30829
  Copyright terms: Public domain W3C validator