Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > measinblem | Structured version Visualization version GIF version |
Description: Lemma for measinb 31932. (Contributed by Thierry Arnoux, 2-Jun-2017.) |
Ref | Expression |
---|---|
measinblem | ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) → (𝑀‘(∪ 𝐵 ∩ 𝐴)) = Σ*𝑥 ∈ 𝐵(𝑀‘(𝑥 ∩ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin1 4996 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴) = (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐴) | |
2 | uniiun 4983 | . . . . 5 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
3 | 2 | ineq1i 4139 | . . . 4 ⊢ (∪ 𝐵 ∩ 𝐴) = (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐴) |
4 | 1, 3 | eqtr4i 2770 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴) = (∪ 𝐵 ∩ 𝐴) |
5 | 4 | fveq2i 6741 | . 2 ⊢ (𝑀‘∪ 𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴)) = (𝑀‘(∪ 𝐵 ∩ 𝐴)) |
6 | simplll 775 | . . 3 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) → 𝑀 ∈ (measures‘𝑆)) | |
7 | nfv 1922 | . . . . 5 ⊢ Ⅎ𝑥((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) | |
8 | nfv 1922 | . . . . . 6 ⊢ Ⅎ𝑥 𝐵 ≼ ω | |
9 | nfdisj1 5048 | . . . . . 6 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐵 𝑥 | |
10 | 8, 9 | nfan 1907 | . . . . 5 ⊢ Ⅎ𝑥(𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥) |
11 | 7, 10 | nfan 1907 | . . . 4 ⊢ Ⅎ𝑥(((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) |
12 | simp1ll 1238 | . . . . . . 7 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥) ∧ 𝑥 ∈ 𝐵) → 𝑀 ∈ (measures‘𝑆)) | |
13 | measbase 31908 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
14 | 12, 13 | syl 17 | . . . . . 6 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥) ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ ∪ ran sigAlgebra) |
15 | simp3 1140 | . . . . . . 7 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
16 | simp1r 1200 | . . . . . . 7 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥) ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ 𝒫 𝑆) | |
17 | elelpwi 4541 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑆) → 𝑥 ∈ 𝑆) | |
18 | 15, 16, 17 | syl2anc 587 | . . . . . 6 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑆) |
19 | simp1lr 1239 | . . . . . 6 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥) ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑆) | |
20 | inelsiga 31846 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝑥 ∩ 𝐴) ∈ 𝑆) | |
21 | 14, 18, 19, 20 | syl3anc 1373 | . . . . 5 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∩ 𝐴) ∈ 𝑆) |
22 | 21 | 3expia 1123 | . . . 4 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) → (𝑥 ∈ 𝐵 → (𝑥 ∩ 𝐴) ∈ 𝑆)) |
23 | 11, 22 | ralrimi 3140 | . . 3 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) → ∀𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴) ∈ 𝑆) |
24 | simprl 771 | . . 3 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) → 𝐵 ≼ ω) | |
25 | disjin 30675 | . . . 4 ⊢ (Disj 𝑥 ∈ 𝐵 𝑥 → Disj 𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴)) | |
26 | 25 | ad2antll 729 | . . 3 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) → Disj 𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴)) |
27 | measvuni 31925 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴) ∈ 𝑆 ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴))) → (𝑀‘∪ 𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴)) = Σ*𝑥 ∈ 𝐵(𝑀‘(𝑥 ∩ 𝐴))) | |
28 | 6, 23, 24, 26, 27 | syl112anc 1376 | . 2 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) → (𝑀‘∪ 𝑥 ∈ 𝐵 (𝑥 ∩ 𝐴)) = Σ*𝑥 ∈ 𝐵(𝑀‘(𝑥 ∩ 𝐴))) |
29 | 5, 28 | eqtr3id 2794 | 1 ⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) → (𝑀‘(∪ 𝐵 ∩ 𝐴)) = Σ*𝑥 ∈ 𝐵(𝑀‘(𝑥 ∩ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ∀wral 3064 ∩ cin 3882 𝒫 cpw 4529 ∪ cuni 4835 ∪ ciun 4920 Disj wdisj 5034 class class class wbr 5069 ran crn 5569 ‘cfv 6400 ωcom 7665 ≼ cdom 8647 Σ*cesum 31738 sigAlgebracsiga 31819 measurescmeas 31906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-inf2 9285 ax-ac2 10106 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 ax-pre-sup 10836 ax-addf 10837 ax-mulf 10838 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-iin 4923 df-disj 5035 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-se 5527 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-isom 6409 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-of 7490 df-om 7666 df-1st 7782 df-2nd 7783 df-supp 7927 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-2o 8226 df-er 8414 df-map 8533 df-pm 8534 df-ixp 8602 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-fsupp 9015 df-fi 9056 df-sup 9087 df-inf 9088 df-oi 9155 df-dju 9546 df-card 9584 df-acn 9587 df-ac 9759 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-div 11519 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-7 11927 df-8 11928 df-9 11929 df-n0 12120 df-z 12206 df-dec 12323 df-uz 12468 df-q 12574 df-rp 12616 df-xneg 12733 df-xadd 12734 df-xmul 12735 df-ioo 12968 df-ioc 12969 df-ico 12970 df-icc 12971 df-fz 13125 df-fzo 13268 df-fl 13396 df-mod 13474 df-seq 13606 df-exp 13667 df-fac 13872 df-bc 13901 df-hash 13929 df-shft 14662 df-cj 14694 df-re 14695 df-im 14696 df-sqrt 14830 df-abs 14831 df-limsup 15064 df-clim 15081 df-rlim 15082 df-sum 15282 df-ef 15661 df-sin 15663 df-cos 15664 df-pi 15666 df-struct 16732 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-mulr 16848 df-starv 16849 df-sca 16850 df-vsca 16851 df-ip 16852 df-tset 16853 df-ple 16854 df-ds 16856 df-unif 16857 df-hom 16858 df-cco 16859 df-rest 16959 df-topn 16960 df-0g 16978 df-gsum 16979 df-topgen 16980 df-pt 16981 df-prds 16984 df-ordt 17038 df-xrs 17039 df-qtop 17044 df-imas 17045 df-xps 17047 df-mre 17121 df-mrc 17122 df-acs 17124 df-ps 18104 df-tsr 18105 df-plusf 18145 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-mhm 18250 df-submnd 18251 df-grp 18400 df-minusg 18401 df-sbg 18402 df-mulg 18521 df-subg 18572 df-cntz 18743 df-cmn 19204 df-abl 19205 df-mgp 19537 df-ur 19549 df-ring 19596 df-cring 19597 df-subrg 19830 df-abv 19885 df-lmod 19933 df-scaf 19934 df-sra 20241 df-rgmod 20242 df-psmet 20387 df-xmet 20388 df-met 20389 df-bl 20390 df-mopn 20391 df-fbas 20392 df-fg 20393 df-cnfld 20396 df-top 21822 df-topon 21839 df-topsp 21861 df-bases 21874 df-cld 21947 df-ntr 21948 df-cls 21949 df-nei 22026 df-lp 22064 df-perf 22065 df-cn 22155 df-cnp 22156 df-haus 22243 df-tx 22490 df-hmeo 22683 df-fil 22774 df-fm 22866 df-flim 22867 df-flf 22868 df-tmd 23000 df-tgp 23001 df-tsms 23055 df-trg 23088 df-xms 23249 df-ms 23250 df-tms 23251 df-nm 23511 df-ngp 23512 df-nrg 23514 df-nlm 23515 df-ii 23805 df-cncf 23806 df-limc 24794 df-dv 24795 df-log 25476 df-esum 31739 df-siga 31820 df-meas 31907 |
This theorem is referenced by: measinb 31932 |
Copyright terms: Public domain | W3C validator |