Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem2 Structured version   Visualization version   GIF version

Theorem carsgclctunlem2 34303
Description: Lemma for carsgclctun 34305. (Contributed by Thierry Arnoux, 25-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctunlem2.1 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
carsgclctunlem2.2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
carsgclctunlem2.3 (𝜑𝐸 ∈ 𝒫 𝑂)
carsgclctunlem2.4 (𝜑 → (𝑀𝐸) ≠ +∞)
Assertion
Ref Expression
carsgclctunlem2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦,𝑘   𝑘,𝐸   𝑘,𝑀   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑉(𝑥,𝑦,𝑘)

Proof of Theorem carsgclctunlem2
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunin2 5020 . . . . 5 𝑘 ∈ ℕ (𝐸𝐴) = (𝐸 𝑘 ∈ ℕ 𝐴)
21fveq2i 6825 . . . 4 (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))
3 iccssxr 13333 . . . . 5 (0[,]+∞) ⊆ ℝ*
4 carsgval.2 . . . . . 6 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
5 nnex 12134 . . . . . . . 8 ℕ ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
7 carsgclctunlem2.3 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
87adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
98elpwincl1 32474 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐸𝐴) ∈ 𝒫 𝑂)
106, 9elpwiuncl 32476 . . . . . 6 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
114, 10ffvelcdmd 7019 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ (0[,]+∞))
123, 11sselid 3933 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ ℝ*)
132, 12eqeltrrid 2833 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
144, 7ffvelcdmd 7019 . . . . 5 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
153, 14sselid 3933 . . . 4 (𝜑 → (𝑀𝐸) ∈ ℝ*)
167elpwdifcl 32475 . . . . . . 7 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ∈ 𝒫 𝑂)
174, 16ffvelcdmd 7019 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
183, 17sselid 3933 . . . . 5 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
1918xnegcld 13202 . . . 4 (𝜑 → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
2015, 19xaddcld 13203 . . 3 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ*)
214adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
2221, 9ffvelcdmd 7019 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
2322ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
24 nfcv 2891 . . . . . . . 8 𝑘
2524esumcl 34013 . . . . . . 7 ((ℕ ∈ V ∧ ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞)) → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
266, 23, 25syl2anc 584 . . . . . 6 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
273, 26sselid 3933 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ ℝ*)
289ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
29 dfiun3g 5909 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3028, 29syl 17 . . . . . . . 8 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3130fveq2d 6826 . . . . . . 7 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
32 nnct 13888 . . . . . . . . . 10 ℕ ≼ ω
33 mptct 10432 . . . . . . . . . 10 (ℕ ≼ ω → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
34 rnct 10419 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
3532, 33, 34mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω
3635a1i 11 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
37 eqid 2729 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (𝐸𝐴)) = (𝑘 ∈ ℕ ↦ (𝐸𝐴))
3837rnmptss 7057 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
3928, 38syl 17 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
40 mptexg 7157 . . . . . . . . . 10 (ℕ ∈ V → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
41 rnexg 7835 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
425, 40, 41mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V
43 breq1 5095 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω))
44 sseq1 3961 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ⊆ 𝒫 𝑂 ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂))
4543, 443anbi23d 1441 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)))
46 unieq 4869 . . . . . . . . . . . . 13 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → 𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
4746fveq2d 6826 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑀 𝑥) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
48 esumeq1 34017 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
4947, 48breq12d 5105 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5045, 49imbi12d 344 . . . . . . . . . 10 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))))
51 carsgsiga.2 . . . . . . . . . 10 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5250, 51vtoclg 3509 . . . . . . . . 9 (ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5342, 52ax-mp 5 . . . . . . . 8 ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5436, 39, 53mpd3an23 1465 . . . . . . 7 (𝜑 → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5531, 54eqbrtrd 5114 . . . . . 6 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
56 fveq2 6822 . . . . . . 7 (𝑦 = (𝐸𝐴) → (𝑀𝑦) = (𝑀‘(𝐸𝐴)))
57 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝐸𝐴) = ∅)
5857fveq2d 6826 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
59 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
6059ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘∅) = 0)
6158, 60eqtrd 2764 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = 0)
62 carsgclctunlem2.1 . . . . . . . . 9 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
63 disjin 32535 . . . . . . . . 9 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ ℕ (𝐴𝐸))
6462, 63syl 17 . . . . . . . 8 (𝜑Disj 𝑘 ∈ ℕ (𝐴𝐸))
65 incom 4160 . . . . . . . . . 10 (𝐴𝐸) = (𝐸𝐴)
6665rgenw 3048 . . . . . . . . 9 𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴)
67 disjeq2 5063 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴) → (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴)))
6866, 67ax-mp 5 . . . . . . . 8 (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴))
6964, 68sylib 218 . . . . . . 7 (𝜑Disj 𝑘 ∈ ℕ (𝐸𝐴))
7056, 6, 22, 9, 61, 69esumrnmpt2 34051 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦) = Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
7155, 70breqtrd 5118 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
72 carsgval.1 . . . . . . . 8 (𝜑𝑂𝑉)
73 difssd 4088 . . . . . . . 8 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ 𝐸)
74 carsgsiga.3 . . . . . . . 8 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
7572, 4, 73, 7, 74carsgmon 34298 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸))
7614, 17, 75xrge0subcld 32715 . . . . . 6 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ (0[,]+∞))
774adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
787adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
7978elpwincl1 32474 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8077, 79ffvelcdmd 7019 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
813, 80sselid 3933 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
82 xrge0neqmnf 13355 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8380, 82syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8478elpwdifcl 32475 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8577, 84ffvelcdmd 7019 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
863, 85sselid 3933 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
87 xrge0neqmnf 13355 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8885, 87syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8986xnegcld 13202 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
90 xnegneg 13116 . . . . . . . . . . . . . . . . 17 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9186, 90syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9291adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
93 xnegeq 13109 . . . . . . . . . . . . . . . . 17 (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞ → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
9493adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
95 xnegmnf 13112 . . . . . . . . . . . . . . . 16 -𝑒-∞ = +∞
9694, 95eqtrdi 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9792, 96eqtr3d 2766 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9897oveq2d 7365 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞))
99 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
100 fz1ssnn 13458 . . . . . . . . . . . . . . . . . . . . . . 23 (1...𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
102101sselda 3935 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
103 carsgclctunlem2.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
10499, 102, 103syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (toCaraSiga‘𝑀))
105104ralrimiva 3121 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
106 dfiun3g 5909 . . . . . . . . . . . . . . . . . . 19 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
107105, 106syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
10872adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑂𝑉)
10959adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
110513adant1r 1178 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
111 fzfi 13879 . . . . . . . . . . . . . . . . . . . . 21 (1...𝑛) ∈ Fin
112 mptfi 9241 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑛) ∈ Fin → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
113 rnfi 9230 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
114111, 112, 113mp2b 10 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin
115114a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
116 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) ↦ 𝐴) = (𝑘 ∈ (1...𝑛) ↦ 𝐴)
117116rnmptss 7057 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
118105, 117syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
119108, 77, 109, 110, 115, 118fiunelcarsg 34300 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ (toCaraSiga‘𝑀))
120107, 119eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
121108, 77elcarsg 34289 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))))
122120, 121mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒)))
123122simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))
124 ineq1 4164 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
125124fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
126 difeq1 4070 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
127126fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
128125, 127oveq12d 7367 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → ((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
129 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → (𝑀𝑒) = (𝑀𝐸))
130128, 129eqeq12d 2745 . . . . . . . . . . . . . . . 16 (𝑒 = 𝐸 → (((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) ↔ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
131130rspcv 3573 . . . . . . . . . . . . . . 15 (𝐸 ∈ 𝒫 𝑂 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
13278, 123, 131sylc 65 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
133132adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
134 xaddpnf1 13128 . . . . . . . . . . . . . . 15 (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13581, 83, 134syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
136135adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13798, 133, 1363eqtr3d 2772 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) = +∞)
138 carsgclctunlem2.4 . . . . . . . . . . . . . 14 (𝜑 → (𝑀𝐸) ≠ +∞)
139138ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) ≠ +∞)
140139neneqd 2930 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ¬ (𝑀𝐸) = +∞)
141137, 140pm2.65da 816 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ¬ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞)
142141neqned 2932 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
143 xaddass 13151 . . . . . . . . . 10 ((((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
14481, 83, 86, 88, 89, 142, 143syl222anc 1388 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
145 xnegid 13140 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
14686, 145syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
147146oveq2d 7365 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0))
148 xaddrid 13143 . . . . . . . . . 10 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
14981, 148syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
150144, 147, 1493eqtrd 2768 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
151132oveq1d 7364 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
152107ineq2d 4171 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)))
153152fveq2d 6826 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))))
154 mptss 5993 . . . . . . . . . . . . 13 ((1...𝑛) ⊆ ℕ → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴))
155 rnss 5881 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
156100, 154, 155mp2b 10 . . . . . . . . . . . 12 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴)
157156a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
158 disjrnmpt 32534 . . . . . . . . . . . . 13 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
15962, 158syl 17 . . . . . . . . . . . 12 (𝜑Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
160159adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
161 disjss1 5065 . . . . . . . . . . 11 (ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴) → (Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦))
162157, 160, 161sylc 65 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦)
163108, 77, 109, 110, 115, 118, 162, 78carsgclctunlem1 34301 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))) = Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)))
164 ineq2 4165 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝐸𝑦) = (𝐸𝐴))
165164fveq2d 6826 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝐴)))
166111elexi 3459 . . . . . . . . . . 11 (1...𝑛) ∈ V
167166a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ V)
16899, 102, 22syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
169 inss2 4189 . . . . . . . . . . . . . . 15 (𝐸𝐴) ⊆ 𝐴
170 sseq2 3962 . . . . . . . . . . . . . . 15 (𝐴 = ∅ → ((𝐸𝐴) ⊆ 𝐴 ↔ (𝐸𝐴) ⊆ ∅))
171169, 170mpbii 233 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝐸𝐴) ⊆ ∅)
172 ss0 4353 . . . . . . . . . . . . . 14 ((𝐸𝐴) ⊆ ∅ → (𝐸𝐴) = ∅)
173171, 172syl 17 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐸𝐴) = ∅)
174173adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝐸𝐴) = ∅)
175174fveq2d 6826 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
176109ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘∅) = 0)
177175, 176eqtrd 2764 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = 0)
17862adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ ℕ 𝐴)
179 disjss1 5065 . . . . . . . . . . 11 ((1...𝑛) ⊆ ℕ → (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ (1...𝑛)𝐴))
180101, 178, 179sylc 65 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)𝐴)
181165, 167, 168, 104, 177, 180esumrnmpt2 34051 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
182153, 163, 1813eqtrd 2768 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
183150, 151, 1823eqtr3rd 2773 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
18417adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
1853, 184sselid 3933 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
186185xnegcld 13202 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
18715adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀𝐸) ∈ ℝ*)
188 iunss1 4956 . . . . . . . . . . . 12 ((1...𝑛) ⊆ ℕ → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
189100, 188mp1i 13 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
190189sscond 4097 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ (𝐸 𝑘 ∈ (1...𝑛)𝐴))
191743adant1r 1178 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
192108, 77, 190, 84, 191carsgmon 34298 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
193 xleneg 13120 . . . . . . . . . 10 (((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ↔ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
194193biimpa 476 . . . . . . . . 9 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
195185, 86, 192, 194syl21anc 837 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
196 xleadd2a 13156 . . . . . . . 8 (((-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19789, 186, 187, 195, 196syl31anc 1375 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
198183, 197eqbrtrd 5114 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19976, 22, 198esumgect 34073 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20012, 27, 20, 71, 199xrletrd 13064 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
2012, 200eqbrtrrid 5128 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
202 xleadd1a 13155 . . 3 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20313, 20, 18, 201, 202syl31anc 1375 . 2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
204 xrge0npcan 32983 . . 3 (((𝑀𝐸) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸)) → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
20514, 17, 75, 204syl3anc 1373 . 2 (𝜑 → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
206203, 205breqtrd 5118 1 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  cdif 3900  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858   ciun 4941  Disj wdisj 5059   class class class wbr 5092  cmpt 5173  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  ωcom 7799  cdom 8870  Fincfn 8872  0cc0 11009  1c1 11010  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148  cle 11150  cn 12128  -𝑒cxne 13011   +𝑒 cxad 13012  [,]cicc 13251  ...cfz 13410  Σ*cesum 34010  toCaraSigaccarsg 34285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20765  df-scaf 20766  df-sra 21077  df-rgmod 21078  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tmd 23957  df-tgp 23958  df-tsms 24012  df-trg 24045  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469  df-nrg 24471  df-nlm 24472  df-ii 24768  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-esum 34011  df-carsg 34286
This theorem is referenced by:  carsgclctunlem3  34304
  Copyright terms: Public domain W3C validator