Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem2 Structured version   Visualization version   GIF version

Theorem carsgclctunlem2 34332
Description: Lemma for carsgclctun 34334. (Contributed by Thierry Arnoux, 25-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctunlem2.1 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
carsgclctunlem2.2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
carsgclctunlem2.3 (𝜑𝐸 ∈ 𝒫 𝑂)
carsgclctunlem2.4 (𝜑 → (𝑀𝐸) ≠ +∞)
Assertion
Ref Expression
carsgclctunlem2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦,𝑘   𝑘,𝐸   𝑘,𝑀   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑉(𝑥,𝑦,𝑘)

Proof of Theorem carsgclctunlem2
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunin2 5017 . . . . 5 𝑘 ∈ ℕ (𝐸𝐴) = (𝐸 𝑘 ∈ ℕ 𝐴)
21fveq2i 6825 . . . 4 (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))
3 iccssxr 13330 . . . . 5 (0[,]+∞) ⊆ ℝ*
4 carsgval.2 . . . . . 6 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
5 nnex 12131 . . . . . . . 8 ℕ ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
7 carsgclctunlem2.3 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
87adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
98elpwincl1 32505 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐸𝐴) ∈ 𝒫 𝑂)
106, 9elpwiuncl 32507 . . . . . 6 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
114, 10ffvelcdmd 7018 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ (0[,]+∞))
123, 11sselid 3927 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ ℝ*)
132, 12eqeltrrid 2836 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
144, 7ffvelcdmd 7018 . . . . 5 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
153, 14sselid 3927 . . . 4 (𝜑 → (𝑀𝐸) ∈ ℝ*)
167elpwdifcl 32506 . . . . . . 7 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ∈ 𝒫 𝑂)
174, 16ffvelcdmd 7018 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
183, 17sselid 3927 . . . . 5 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
1918xnegcld 13199 . . . 4 (𝜑 → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
2015, 19xaddcld 13200 . . 3 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ*)
214adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
2221, 9ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
2322ralrimiva 3124 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
24 nfcv 2894 . . . . . . . 8 𝑘
2524esumcl 34043 . . . . . . 7 ((ℕ ∈ V ∧ ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞)) → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
266, 23, 25syl2anc 584 . . . . . 6 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
273, 26sselid 3927 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ ℝ*)
289ralrimiva 3124 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
29 dfiun3g 5906 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3028, 29syl 17 . . . . . . . 8 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3130fveq2d 6826 . . . . . . 7 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
32 nnct 13888 . . . . . . . . . 10 ℕ ≼ ω
33 mptct 10429 . . . . . . . . . 10 (ℕ ≼ ω → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
34 rnct 10416 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
3532, 33, 34mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω
3635a1i 11 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
37 eqid 2731 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (𝐸𝐴)) = (𝑘 ∈ ℕ ↦ (𝐸𝐴))
3837rnmptss 7056 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
3928, 38syl 17 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
40 mptexg 7155 . . . . . . . . . 10 (ℕ ∈ V → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
41 rnexg 7832 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
425, 40, 41mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V
43 breq1 5092 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω))
44 sseq1 3955 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ⊆ 𝒫 𝑂 ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂))
4543, 443anbi23d 1441 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)))
46 unieq 4867 . . . . . . . . . . . . 13 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → 𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
4746fveq2d 6826 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑀 𝑥) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
48 esumeq1 34047 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
4947, 48breq12d 5102 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5045, 49imbi12d 344 . . . . . . . . . 10 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))))
51 carsgsiga.2 . . . . . . . . . 10 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5250, 51vtoclg 3507 . . . . . . . . 9 (ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5342, 52ax-mp 5 . . . . . . . 8 ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5436, 39, 53mpd3an23 1465 . . . . . . 7 (𝜑 → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5531, 54eqbrtrd 5111 . . . . . 6 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
56 fveq2 6822 . . . . . . 7 (𝑦 = (𝐸𝐴) → (𝑀𝑦) = (𝑀‘(𝐸𝐴)))
57 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝐸𝐴) = ∅)
5857fveq2d 6826 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
59 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
6059ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘∅) = 0)
6158, 60eqtrd 2766 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = 0)
62 carsgclctunlem2.1 . . . . . . . . 9 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
63 disjin 32566 . . . . . . . . 9 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ ℕ (𝐴𝐸))
6462, 63syl 17 . . . . . . . 8 (𝜑Disj 𝑘 ∈ ℕ (𝐴𝐸))
65 incom 4156 . . . . . . . . . 10 (𝐴𝐸) = (𝐸𝐴)
6665rgenw 3051 . . . . . . . . 9 𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴)
67 disjeq2 5060 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴) → (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴)))
6866, 67ax-mp 5 . . . . . . . 8 (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴))
6964, 68sylib 218 . . . . . . 7 (𝜑Disj 𝑘 ∈ ℕ (𝐸𝐴))
7056, 6, 22, 9, 61, 69esumrnmpt2 34081 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦) = Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
7155, 70breqtrd 5115 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
72 carsgval.1 . . . . . . . 8 (𝜑𝑂𝑉)
73 difssd 4084 . . . . . . . 8 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ 𝐸)
74 carsgsiga.3 . . . . . . . 8 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
7572, 4, 73, 7, 74carsgmon 34327 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸))
7614, 17, 75xrge0subcld 32746 . . . . . 6 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ (0[,]+∞))
774adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
787adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
7978elpwincl1 32505 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8077, 79ffvelcdmd 7018 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
813, 80sselid 3927 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
82 xrge0neqmnf 13352 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8380, 82syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8478elpwdifcl 32506 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8577, 84ffvelcdmd 7018 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
863, 85sselid 3927 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
87 xrge0neqmnf 13352 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8885, 87syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8986xnegcld 13199 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
90 xnegneg 13113 . . . . . . . . . . . . . . . . 17 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9186, 90syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9291adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
93 xnegeq 13106 . . . . . . . . . . . . . . . . 17 (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞ → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
9493adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
95 xnegmnf 13109 . . . . . . . . . . . . . . . 16 -𝑒-∞ = +∞
9694, 95eqtrdi 2782 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9792, 96eqtr3d 2768 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9897oveq2d 7362 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞))
99 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
100 fz1ssnn 13455 . . . . . . . . . . . . . . . . . . . . . . 23 (1...𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
102101sselda 3929 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
103 carsgclctunlem2.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
10499, 102, 103syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (toCaraSiga‘𝑀))
105104ralrimiva 3124 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
106 dfiun3g 5906 . . . . . . . . . . . . . . . . . . 19 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
107105, 106syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
10872adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑂𝑉)
10959adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
110513adant1r 1178 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
111 fzfi 13879 . . . . . . . . . . . . . . . . . . . . 21 (1...𝑛) ∈ Fin
112 mptfi 9235 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑛) ∈ Fin → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
113 rnfi 9224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
114111, 112, 113mp2b 10 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin
115114a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
116 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) ↦ 𝐴) = (𝑘 ∈ (1...𝑛) ↦ 𝐴)
117116rnmptss 7056 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
118105, 117syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
119108, 77, 109, 110, 115, 118fiunelcarsg 34329 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ (toCaraSiga‘𝑀))
120107, 119eqeltrd 2831 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
121108, 77elcarsg 34318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))))
122120, 121mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒)))
123122simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))
124 ineq1 4160 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
125124fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
126 difeq1 4066 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
127126fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
128125, 127oveq12d 7364 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → ((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
129 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → (𝑀𝑒) = (𝑀𝐸))
130128, 129eqeq12d 2747 . . . . . . . . . . . . . . . 16 (𝑒 = 𝐸 → (((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) ↔ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
131130rspcv 3568 . . . . . . . . . . . . . . 15 (𝐸 ∈ 𝒫 𝑂 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
13278, 123, 131sylc 65 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
133132adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
134 xaddpnf1 13125 . . . . . . . . . . . . . . 15 (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13581, 83, 134syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
136135adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13798, 133, 1363eqtr3d 2774 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) = +∞)
138 carsgclctunlem2.4 . . . . . . . . . . . . . 14 (𝜑 → (𝑀𝐸) ≠ +∞)
139138ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) ≠ +∞)
140139neneqd 2933 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ¬ (𝑀𝐸) = +∞)
141137, 140pm2.65da 816 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ¬ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞)
142141neqned 2935 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
143 xaddass 13148 . . . . . . . . . 10 ((((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
14481, 83, 86, 88, 89, 142, 143syl222anc 1388 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
145 xnegid 13137 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
14686, 145syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
147146oveq2d 7362 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0))
148 xaddrid 13140 . . . . . . . . . 10 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
14981, 148syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
150144, 147, 1493eqtrd 2770 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
151132oveq1d 7361 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
152107ineq2d 4167 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)))
153152fveq2d 6826 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))))
154 mptss 5990 . . . . . . . . . . . . 13 ((1...𝑛) ⊆ ℕ → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴))
155 rnss 5878 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
156100, 154, 155mp2b 10 . . . . . . . . . . . 12 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴)
157156a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
158 disjrnmpt 32565 . . . . . . . . . . . . 13 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
15962, 158syl 17 . . . . . . . . . . . 12 (𝜑Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
160159adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
161 disjss1 5062 . . . . . . . . . . 11 (ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴) → (Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦))
162157, 160, 161sylc 65 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦)
163108, 77, 109, 110, 115, 118, 162, 78carsgclctunlem1 34330 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))) = Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)))
164 ineq2 4161 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝐸𝑦) = (𝐸𝐴))
165164fveq2d 6826 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝐴)))
166111elexi 3459 . . . . . . . . . . 11 (1...𝑛) ∈ V
167166a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ V)
16899, 102, 22syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
169 inss2 4185 . . . . . . . . . . . . . . 15 (𝐸𝐴) ⊆ 𝐴
170 sseq2 3956 . . . . . . . . . . . . . . 15 (𝐴 = ∅ → ((𝐸𝐴) ⊆ 𝐴 ↔ (𝐸𝐴) ⊆ ∅))
171169, 170mpbii 233 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝐸𝐴) ⊆ ∅)
172 ss0 4349 . . . . . . . . . . . . . 14 ((𝐸𝐴) ⊆ ∅ → (𝐸𝐴) = ∅)
173171, 172syl 17 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐸𝐴) = ∅)
174173adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝐸𝐴) = ∅)
175174fveq2d 6826 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
176109ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘∅) = 0)
177175, 176eqtrd 2766 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = 0)
17862adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ ℕ 𝐴)
179 disjss1 5062 . . . . . . . . . . 11 ((1...𝑛) ⊆ ℕ → (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ (1...𝑛)𝐴))
180101, 178, 179sylc 65 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)𝐴)
181165, 167, 168, 104, 177, 180esumrnmpt2 34081 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
182153, 163, 1813eqtrd 2770 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
183150, 151, 1823eqtr3rd 2775 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
18417adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
1853, 184sselid 3927 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
186185xnegcld 13199 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
18715adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀𝐸) ∈ ℝ*)
188 iunss1 4954 . . . . . . . . . . . 12 ((1...𝑛) ⊆ ℕ → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
189100, 188mp1i 13 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
190189sscond 4093 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ (𝐸 𝑘 ∈ (1...𝑛)𝐴))
191743adant1r 1178 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
192108, 77, 190, 84, 191carsgmon 34327 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
193 xleneg 13117 . . . . . . . . . 10 (((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ↔ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
194193biimpa 476 . . . . . . . . 9 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
195185, 86, 192, 194syl21anc 837 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
196 xleadd2a 13153 . . . . . . . 8 (((-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19789, 186, 187, 195, 196syl31anc 1375 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
198183, 197eqbrtrd 5111 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19976, 22, 198esumgect 34103 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20012, 27, 20, 71, 199xrletrd 13061 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
2012, 200eqbrtrrid 5125 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
202 xleadd1a 13152 . . 3 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20313, 20, 18, 201, 202syl31anc 1375 . 2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
204 xrge0npcan 33001 . . 3 (((𝑀𝐸) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸)) → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
20514, 17, 75, 204syl3anc 1373 . 2 (𝜑 → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
206203, 205breqtrd 5115 1 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547   cuni 4856   ciun 4939  Disj wdisj 5056   class class class wbr 5089  cmpt 5170  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  ωcom 7796  cdom 8867  Fincfn 8869  0cc0 11006  1c1 11007  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145  cle 11147  cn 12125  -𝑒cxne 13008   +𝑒 cxad 13009  [,]cicc 13248  ...cfz 13407  Σ*cesum 34040  toCaraSigaccarsg 34314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18547  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-abv 20724  df-lmod 20795  df-scaf 20796  df-sra 21107  df-rgmod 21108  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-tmd 23987  df-tgp 23988  df-tsms 24042  df-trg 24075  df-xms 24235  df-ms 24236  df-tms 24237  df-nm 24497  df-ngp 24498  df-nrg 24500  df-nlm 24501  df-ii 24797  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-esum 34041  df-carsg 34315
This theorem is referenced by:  carsgclctunlem3  34333
  Copyright terms: Public domain W3C validator