Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem2 Structured version   Visualization version   GIF version

Theorem carsgclctunlem2 34301
Description: Lemma for carsgclctun 34303. (Contributed by Thierry Arnoux, 25-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctunlem2.1 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
carsgclctunlem2.2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
carsgclctunlem2.3 (𝜑𝐸 ∈ 𝒫 𝑂)
carsgclctunlem2.4 (𝜑 → (𝑀𝐸) ≠ +∞)
Assertion
Ref Expression
carsgclctunlem2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦,𝑘   𝑘,𝐸   𝑘,𝑀   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑉(𝑥,𝑦,𝑘)

Proof of Theorem carsgclctunlem2
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunin2 5076 . . . . 5 𝑘 ∈ ℕ (𝐸𝐴) = (𝐸 𝑘 ∈ ℕ 𝐴)
21fveq2i 6910 . . . 4 (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))
3 iccssxr 13467 . . . . 5 (0[,]+∞) ⊆ ℝ*
4 carsgval.2 . . . . . 6 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
5 nnex 12270 . . . . . . . 8 ℕ ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
7 carsgclctunlem2.3 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
87adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
98elpwincl1 32553 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐸𝐴) ∈ 𝒫 𝑂)
106, 9elpwiuncl 32555 . . . . . 6 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
114, 10ffvelcdmd 7105 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ (0[,]+∞))
123, 11sselid 3993 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ ℝ*)
132, 12eqeltrrid 2844 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
144, 7ffvelcdmd 7105 . . . . 5 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
153, 14sselid 3993 . . . 4 (𝜑 → (𝑀𝐸) ∈ ℝ*)
167elpwdifcl 32554 . . . . . . 7 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ∈ 𝒫 𝑂)
174, 16ffvelcdmd 7105 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
183, 17sselid 3993 . . . . 5 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
1918xnegcld 13339 . . . 4 (𝜑 → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
2015, 19xaddcld 13340 . . 3 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ*)
214adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
2221, 9ffvelcdmd 7105 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
2322ralrimiva 3144 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
24 nfcv 2903 . . . . . . . 8 𝑘
2524esumcl 34011 . . . . . . 7 ((ℕ ∈ V ∧ ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞)) → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
266, 23, 25syl2anc 584 . . . . . 6 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
273, 26sselid 3993 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ ℝ*)
289ralrimiva 3144 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
29 dfiun3g 5981 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3028, 29syl 17 . . . . . . . 8 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3130fveq2d 6911 . . . . . . 7 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
32 nnct 14019 . . . . . . . . . 10 ℕ ≼ ω
33 mptct 10576 . . . . . . . . . 10 (ℕ ≼ ω → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
34 rnct 10563 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
3532, 33, 34mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω
3635a1i 11 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
37 eqid 2735 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (𝐸𝐴)) = (𝑘 ∈ ℕ ↦ (𝐸𝐴))
3837rnmptss 7143 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
3928, 38syl 17 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
40 mptexg 7241 . . . . . . . . . 10 (ℕ ∈ V → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
41 rnexg 7925 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
425, 40, 41mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V
43 breq1 5151 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω))
44 sseq1 4021 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ⊆ 𝒫 𝑂 ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂))
4543, 443anbi23d 1438 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)))
46 unieq 4923 . . . . . . . . . . . . 13 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → 𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
4746fveq2d 6911 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑀 𝑥) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
48 esumeq1 34015 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
4947, 48breq12d 5161 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5045, 49imbi12d 344 . . . . . . . . . 10 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))))
51 carsgsiga.2 . . . . . . . . . 10 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5250, 51vtoclg 3554 . . . . . . . . 9 (ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5342, 52ax-mp 5 . . . . . . . 8 ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5436, 39, 53mpd3an23 1462 . . . . . . 7 (𝜑 → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5531, 54eqbrtrd 5170 . . . . . 6 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
56 fveq2 6907 . . . . . . 7 (𝑦 = (𝐸𝐴) → (𝑀𝑦) = (𝑀‘(𝐸𝐴)))
57 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝐸𝐴) = ∅)
5857fveq2d 6911 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
59 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
6059ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘∅) = 0)
6158, 60eqtrd 2775 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = 0)
62 carsgclctunlem2.1 . . . . . . . . 9 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
63 disjin 32606 . . . . . . . . 9 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ ℕ (𝐴𝐸))
6462, 63syl 17 . . . . . . . 8 (𝜑Disj 𝑘 ∈ ℕ (𝐴𝐸))
65 incom 4217 . . . . . . . . . 10 (𝐴𝐸) = (𝐸𝐴)
6665rgenw 3063 . . . . . . . . 9 𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴)
67 disjeq2 5119 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴) → (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴)))
6866, 67ax-mp 5 . . . . . . . 8 (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴))
6964, 68sylib 218 . . . . . . 7 (𝜑Disj 𝑘 ∈ ℕ (𝐸𝐴))
7056, 6, 22, 9, 61, 69esumrnmpt2 34049 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦) = Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
7155, 70breqtrd 5174 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
72 carsgval.1 . . . . . . . 8 (𝜑𝑂𝑉)
73 difssd 4147 . . . . . . . 8 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ 𝐸)
74 carsgsiga.3 . . . . . . . 8 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
7572, 4, 73, 7, 74carsgmon 34296 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸))
7614, 17, 75xrge0subcld 32774 . . . . . 6 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ (0[,]+∞))
774adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
787adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
7978elpwincl1 32553 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8077, 79ffvelcdmd 7105 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
813, 80sselid 3993 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
82 xrge0neqmnf 13489 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8380, 82syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8478elpwdifcl 32554 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8577, 84ffvelcdmd 7105 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
863, 85sselid 3993 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
87 xrge0neqmnf 13489 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8885, 87syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8986xnegcld 13339 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
90 xnegneg 13253 . . . . . . . . . . . . . . . . 17 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9186, 90syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9291adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
93 xnegeq 13246 . . . . . . . . . . . . . . . . 17 (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞ → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
9493adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
95 xnegmnf 13249 . . . . . . . . . . . . . . . 16 -𝑒-∞ = +∞
9694, 95eqtrdi 2791 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9792, 96eqtr3d 2777 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9897oveq2d 7447 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞))
99 simpll 767 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
100 fz1ssnn 13592 . . . . . . . . . . . . . . . . . . . . . . 23 (1...𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
102101sselda 3995 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
103 carsgclctunlem2.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
10499, 102, 103syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (toCaraSiga‘𝑀))
105104ralrimiva 3144 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
106 dfiun3g 5981 . . . . . . . . . . . . . . . . . . 19 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
107105, 106syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
10872adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑂𝑉)
10959adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
110513adant1r 1176 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
111 fzfi 14010 . . . . . . . . . . . . . . . . . . . . 21 (1...𝑛) ∈ Fin
112 mptfi 9389 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑛) ∈ Fin → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
113 rnfi 9378 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
114111, 112, 113mp2b 10 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin
115114a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
116 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) ↦ 𝐴) = (𝑘 ∈ (1...𝑛) ↦ 𝐴)
117116rnmptss 7143 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
118105, 117syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
119108, 77, 109, 110, 115, 118fiunelcarsg 34298 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ (toCaraSiga‘𝑀))
120107, 119eqeltrd 2839 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
121108, 77elcarsg 34287 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))))
122120, 121mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒)))
123122simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))
124 ineq1 4221 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
125124fveq2d 6911 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
126 difeq1 4129 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
127126fveq2d 6911 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
128125, 127oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → ((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
129 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → (𝑀𝑒) = (𝑀𝐸))
130128, 129eqeq12d 2751 . . . . . . . . . . . . . . . 16 (𝑒 = 𝐸 → (((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) ↔ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
131130rspcv 3618 . . . . . . . . . . . . . . 15 (𝐸 ∈ 𝒫 𝑂 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
13278, 123, 131sylc 65 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
133132adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
134 xaddpnf1 13265 . . . . . . . . . . . . . . 15 (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13581, 83, 134syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
136135adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13798, 133, 1363eqtr3d 2783 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) = +∞)
138 carsgclctunlem2.4 . . . . . . . . . . . . . 14 (𝜑 → (𝑀𝐸) ≠ +∞)
139138ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) ≠ +∞)
140139neneqd 2943 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ¬ (𝑀𝐸) = +∞)
141137, 140pm2.65da 817 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ¬ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞)
142141neqned 2945 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
143 xaddass 13288 . . . . . . . . . 10 ((((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
14481, 83, 86, 88, 89, 142, 143syl222anc 1385 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
145 xnegid 13277 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
14686, 145syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
147146oveq2d 7447 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0))
148 xaddrid 13280 . . . . . . . . . 10 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
14981, 148syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
150144, 147, 1493eqtrd 2779 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
151132oveq1d 7446 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
152107ineq2d 4228 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)))
153152fveq2d 6911 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))))
154 mptss 6062 . . . . . . . . . . . . 13 ((1...𝑛) ⊆ ℕ → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴))
155 rnss 5953 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
156100, 154, 155mp2b 10 . . . . . . . . . . . 12 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴)
157156a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
158 disjrnmpt 32605 . . . . . . . . . . . . 13 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
15962, 158syl 17 . . . . . . . . . . . 12 (𝜑Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
160159adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
161 disjss1 5121 . . . . . . . . . . 11 (ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴) → (Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦))
162157, 160, 161sylc 65 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦)
163108, 77, 109, 110, 115, 118, 162, 78carsgclctunlem1 34299 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))) = Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)))
164 ineq2 4222 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝐸𝑦) = (𝐸𝐴))
165164fveq2d 6911 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝐴)))
166111elexi 3501 . . . . . . . . . . 11 (1...𝑛) ∈ V
167166a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ V)
16899, 102, 22syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
169 inss2 4246 . . . . . . . . . . . . . . 15 (𝐸𝐴) ⊆ 𝐴
170 sseq2 4022 . . . . . . . . . . . . . . 15 (𝐴 = ∅ → ((𝐸𝐴) ⊆ 𝐴 ↔ (𝐸𝐴) ⊆ ∅))
171169, 170mpbii 233 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝐸𝐴) ⊆ ∅)
172 ss0 4408 . . . . . . . . . . . . . 14 ((𝐸𝐴) ⊆ ∅ → (𝐸𝐴) = ∅)
173171, 172syl 17 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐸𝐴) = ∅)
174173adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝐸𝐴) = ∅)
175174fveq2d 6911 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
176109ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘∅) = 0)
177175, 176eqtrd 2775 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = 0)
17862adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ ℕ 𝐴)
179 disjss1 5121 . . . . . . . . . . 11 ((1...𝑛) ⊆ ℕ → (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ (1...𝑛)𝐴))
180101, 178, 179sylc 65 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)𝐴)
181165, 167, 168, 104, 177, 180esumrnmpt2 34049 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
182153, 163, 1813eqtrd 2779 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
183150, 151, 1823eqtr3rd 2784 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
18417adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
1853, 184sselid 3993 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
186185xnegcld 13339 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
18715adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀𝐸) ∈ ℝ*)
188 iunss1 5011 . . . . . . . . . . . 12 ((1...𝑛) ⊆ ℕ → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
189100, 188mp1i 13 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
190189sscond 4156 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ (𝐸 𝑘 ∈ (1...𝑛)𝐴))
191743adant1r 1176 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
192108, 77, 190, 84, 191carsgmon 34296 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
193 xleneg 13257 . . . . . . . . . 10 (((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ↔ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
194193biimpa 476 . . . . . . . . 9 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
195185, 86, 192, 194syl21anc 838 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
196 xleadd2a 13293 . . . . . . . 8 (((-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19789, 186, 187, 195, 196syl31anc 1372 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
198183, 197eqbrtrd 5170 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19976, 22, 198esumgect 34071 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20012, 27, 20, 71, 199xrletrd 13201 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
2012, 200eqbrtrrid 5184 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
202 xleadd1a 13292 . . 3 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20313, 20, 18, 201, 202syl31anc 1372 . 2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
204 xrge0npcan 33008 . . 3 (((𝑀𝐸) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸)) → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
20514, 17, 75, 204syl3anc 1370 . 2 (𝜑 → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
206203, 205breqtrd 5174 1 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cdif 3960  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   ciun 4996  Disj wdisj 5115   class class class wbr 5148  cmpt 5231  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  ωcom 7887  cdom 8982  Fincfn 8984  0cc0 11153  1c1 11154  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292  cle 11294  cn 12264  -𝑒cxne 13149   +𝑒 cxad 13150  [,]cicc 13387  ...cfz 13544  Σ*cesum 34008  toCaraSigaccarsg 34283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-ordt 17548  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-ps 18624  df-tsr 18625  df-plusf 18665  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-subrng 20563  df-subrg 20587  df-abv 20827  df-lmod 20877  df-scaf 20878  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-tmd 24096  df-tgp 24097  df-tsms 24151  df-trg 24184  df-xms 24346  df-ms 24347  df-tms 24348  df-nm 24611  df-ngp 24612  df-nrg 24614  df-nlm 24615  df-ii 24917  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-esum 34009  df-carsg 34284
This theorem is referenced by:  carsgclctunlem3  34302
  Copyright terms: Public domain W3C validator