| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjrnmpt | Structured version Visualization version GIF version | ||
| Description: Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.) |
| Ref | Expression |
|---|---|
| disjrnmpt | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjabrex 32518 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) | |
| 2 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | rnmpt 5924 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
| 4 | disjeq1 5084 | . . 3 ⊢ (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} → (Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ↔ Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ↔ Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) |
| 6 | 1, 5 | sylibr 234 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 {cab 2708 ∃wrex 3054 Disj wdisj 5077 ↦ cmpt 5191 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: fnpreimac 32602 sigapildsys 34159 ldgenpisyslem1 34160 carsgclctunlem2 34317 pmeasadd 34323 |
| Copyright terms: Public domain | W3C validator |