Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrnmpt Structured version   Visualization version   GIF version

Theorem disjrnmpt 32565
Description: Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.)
Assertion
Ref Expression
disjrnmpt (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjabrex 32562 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
2 eqid 2731 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 5896 . . 3 ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4 disjeq1 5063 . . 3 (ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦))
53, 4ax-mp 5 . 2 (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
61, 5sylibr 234 1 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  {cab 2709  wrex 3056  Disj wdisj 5056  cmpt 5170  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  fnpreimac  32653  sigapildsys  34175  ldgenpisyslem1  34176  carsgclctunlem2  34332  pmeasadd  34338
  Copyright terms: Public domain W3C validator