Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrnmpt Structured version   Visualization version   GIF version

Theorem disjrnmpt 32396
Description: Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.)
Assertion
Ref Expression
disjrnmpt (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjabrex 32393 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
2 eqid 2728 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 5961 . . 3 ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4 disjeq1 5124 . . 3 (ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦))
53, 4ax-mp 5 . 2 (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
61, 5sylibr 233 1 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  {cab 2705  wrex 3067  Disj wdisj 5117  cmpt 5235  ran crn 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-cnv 5690  df-dm 5692  df-rn 5693
This theorem is referenced by:  fnpreimac  32478  sigapildsys  33814  ldgenpisyslem1  33815  carsgclctunlem2  33972  pmeasadd  33978
  Copyright terms: Public domain W3C validator