Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrnmpt Structured version   Visualization version   GIF version

Theorem disjrnmpt 30920
Description: Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.)
Assertion
Ref Expression
disjrnmpt (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjabrex 30917 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
2 eqid 2740 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 5863 . . 3 ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4 disjeq1 5051 . . 3 (ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦))
53, 4ax-mp 5 . 2 (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
61, 5sylibr 233 1 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  {cab 2717  wrex 3067  Disj wdisj 5044  cmpt 5162  ran crn 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-cnv 5598  df-dm 5600  df-rn 5601
This theorem is referenced by:  fnpreimac  31004  sigapildsys  32126  ldgenpisyslem1  32127  carsgclctunlem2  32282  pmeasadd  32288
  Copyright terms: Public domain W3C validator