Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjrnmpt | Structured version Visualization version GIF version |
Description: Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.) |
Ref | Expression |
---|---|
disjrnmpt | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjabrex 30917 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) | |
2 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | rnmpt 5863 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
4 | disjeq1 5051 | . . 3 ⊢ (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} → (Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ↔ Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ↔ Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) |
6 | 1, 5 | sylibr 233 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 {cab 2717 ∃wrex 3067 Disj wdisj 5044 ↦ cmpt 5162 ran crn 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-disj 5045 df-br 5080 df-opab 5142 df-mpt 5163 df-cnv 5598 df-dm 5600 df-rn 5601 |
This theorem is referenced by: fnpreimac 31004 sigapildsys 32126 ldgenpisyslem1 32127 carsgclctunlem2 32282 pmeasadd 32288 |
Copyright terms: Public domain | W3C validator |