Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrnmpt Structured version   Visualization version   GIF version

Theorem disjrnmpt 30825
Description: Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.)
Assertion
Ref Expression
disjrnmpt (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjabrex 30822 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
2 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 5853 . . 3 ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4 disjeq1 5042 . . 3 (ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦))
53, 4ax-mp 5 . 2 (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
61, 5sylibr 233 1 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  {cab 2715  wrex 3064  Disj wdisj 5035  cmpt 5153  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  fnpreimac  30910  sigapildsys  32030  ldgenpisyslem1  32031  carsgclctunlem2  32186  pmeasadd  32192
  Copyright terms: Public domain W3C validator