Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrnmpt Structured version   Visualization version   GIF version

Theorem disjrnmpt 32607
Description: Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020.)
Assertion
Ref Expression
disjrnmpt (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjabrex 32604 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
2 eqid 2740 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 5980 . . 3 ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4 disjeq1 5140 . . 3 (ran (𝑥𝐴𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦))
53, 4ax-mp 5 . 2 (Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
61, 5sylibr 234 1 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran (𝑥𝐴𝐵)𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  {cab 2717  wrex 3076  Disj wdisj 5133  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  fnpreimac  32689  sigapildsys  34126  ldgenpisyslem1  34127  carsgclctunlem2  34284  pmeasadd  34290
  Copyright terms: Public domain W3C validator