MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjx0 Structured version   Visualization version   GIF version

Theorem disjx0 5119
Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjx0 Disj 𝑥 ∈ ∅ 𝐵

Proof of Theorem disjx0
StepHypRef Expression
1 0ss 4380 . 2 ∅ ⊆ {∅}
2 disjxsn 5118 . 2 Disj 𝑥 ∈ {∅}𝐵
3 disjss1 5097 . 2 (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵Disj 𝑥 ∈ ∅ 𝐵))
41, 2, 3mp2 9 1 Disj 𝑥 ∈ ∅ 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3931  c0 4313  {csn 4606  Disj wdisj 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-rmo 3364  df-dif 3934  df-ss 3948  df-nul 4314  df-sn 4607  df-disj 5092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator