| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjx0 | Structured version Visualization version GIF version | ||
| Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjx0 | ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4347 | . 2 ⊢ ∅ ⊆ {∅} | |
| 2 | disjxsn 5083 | . 2 ⊢ Disj 𝑥 ∈ {∅}𝐵 | |
| 3 | disjss1 5062 | . 2 ⊢ (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵 → Disj 𝑥 ∈ ∅ 𝐵)) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 ∅c0 4280 {csn 4573 Disj wdisj 5056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-rmo 3346 df-dif 3900 df-ss 3914 df-nul 4281 df-sn 4574 df-disj 5057 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |