![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjx0 | Structured version Visualization version GIF version |
Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjx0 | ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4394 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | disjxsn 5137 | . 2 ⊢ Disj 𝑥 ∈ {∅}𝐵 | |
3 | disjss1 5115 | . 2 ⊢ (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵 → Disj 𝑥 ∈ ∅ 𝐵)) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3946 ∅c0 4320 {csn 4624 Disj wdisj 5109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-rmo 3377 df-v 3477 df-dif 3949 df-in 3953 df-ss 3963 df-nul 4321 df-sn 4625 df-disj 5110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |