![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjx0 | Structured version Visualization version GIF version |
Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjx0 | ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4389 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | disjxsn 5132 | . 2 ⊢ Disj 𝑥 ∈ {∅}𝐵 | |
3 | disjss1 5110 | . 2 ⊢ (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵 → Disj 𝑥 ∈ ∅ 𝐵)) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3941 ∅c0 4315 {csn 4621 Disj wdisj 5104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2526 df-clab 2702 df-cleq 2716 df-clel 2802 df-rmo 3368 df-v 3468 df-dif 3944 df-in 3948 df-ss 3958 df-nul 4316 df-sn 4622 df-disj 5105 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |