![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjx0 | Structured version Visualization version GIF version |
Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjx0 | ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4423 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | disjxsn 5160 | . 2 ⊢ Disj 𝑥 ∈ {∅}𝐵 | |
3 | disjss1 5139 | . 2 ⊢ (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵 → Disj 𝑥 ∈ ∅ 𝐵)) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ∅c0 4352 {csn 4648 Disj wdisj 5133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-rmo 3388 df-dif 3979 df-ss 3993 df-nul 4353 df-sn 4649 df-disj 5134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |