Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjx0 | Structured version Visualization version GIF version |
Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjx0 | ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4335 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | disjxsn 5071 | . 2 ⊢ Disj 𝑥 ∈ {∅}𝐵 | |
3 | disjss1 5049 | . 2 ⊢ (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵 → Disj 𝑥 ∈ ∅ 𝐵)) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3891 ∅c0 4261 {csn 4566 Disj wdisj 5043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-mo 2541 df-clab 2717 df-cleq 2731 df-clel 2817 df-rmo 3073 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-disj 5044 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |