MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjprgw Structured version   Visualization version   GIF version

Theorem disjprgw 5065
Description: Version of disjprg 5066 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Gino Giotto, 26-Jan-2024.)
Hypotheses
Ref Expression
disjprgw.1 (𝑥 = 𝐴𝐶 = 𝐷)
disjprgw.2 (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
disjprgw ((𝐴𝑉𝐵𝑉𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝐶 ↔ (𝐷𝐸) = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem disjprgw
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 = 𝑧𝐴 = 𝑧))
2 nfcv 2906 . . . . . . . . . 10 𝑥𝐴
3 nfcv 2906 . . . . . . . . . 10 𝑥𝐷
4 disjprgw.1 . . . . . . . . . 10 (𝑥 = 𝐴𝐶 = 𝐷)
52, 3, 4csbhypf 3857 . . . . . . . . 9 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐷)
65ineq1d 4142 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = (𝐷𝑧 / 𝑥𝐶))
76eqeq1d 2740 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅ ↔ (𝐷𝑧 / 𝑥𝐶) = ∅))
81, 7orbi12d 915 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅) ↔ (𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅)))
98ralbidv 3120 . . . . 5 (𝑦 = 𝐴 → (∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅) ↔ ∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅)))
10 eqeq1 2742 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 = 𝑧𝐵 = 𝑧))
11 nfcv 2906 . . . . . . . . . 10 𝑥𝐵
12 nfcv 2906 . . . . . . . . . 10 𝑥𝐸
13 disjprgw.2 . . . . . . . . . 10 (𝑥 = 𝐵𝐶 = 𝐸)
1411, 12, 13csbhypf 3857 . . . . . . . . 9 (𝑦 = 𝐵𝑦 / 𝑥𝐶 = 𝐸)
1514ineq1d 4142 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = (𝐸𝑧 / 𝑥𝐶))
1615eqeq1d 2740 . . . . . . 7 (𝑦 = 𝐵 → ((𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅ ↔ (𝐸𝑧 / 𝑥𝐶) = ∅))
1710, 16orbi12d 915 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅) ↔ (𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅)))
1817ralbidv 3120 . . . . 5 (𝑦 = 𝐵 → (∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅) ↔ ∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅)))
199, 18ralprg 4627 . . . 4 ((𝐴𝑉𝐵𝑉) → (∀𝑦 ∈ {𝐴, 𝐵}∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅) ↔ (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅) ∧ ∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅))))
20193adant3 1130 . . 3 ((𝐴𝑉𝐵𝑉𝐴𝐵) → (∀𝑦 ∈ {𝐴, 𝐵}∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅) ↔ (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅) ∧ ∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅))))
21 id 22 . . . . . . . . . 10 (𝑧 = 𝐴𝑧 = 𝐴)
2221eqcomd 2744 . . . . . . . . 9 (𝑧 = 𝐴𝐴 = 𝑧)
2322orcd 869 . . . . . . . 8 (𝑧 = 𝐴 → (𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅))
24 trud 1549 . . . . . . . 8 (𝑧 = 𝐴 → ⊤)
2523, 242thd 264 . . . . . . 7 (𝑧 = 𝐴 → ((𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅) ↔ ⊤))
26 eqeq2 2750 . . . . . . . 8 (𝑧 = 𝐵 → (𝐴 = 𝑧𝐴 = 𝐵))
2711, 12, 13csbhypf 3857 . . . . . . . . . 10 (𝑧 = 𝐵𝑧 / 𝑥𝐶 = 𝐸)
2827ineq2d 4143 . . . . . . . . 9 (𝑧 = 𝐵 → (𝐷𝑧 / 𝑥𝐶) = (𝐷𝐸))
2928eqeq1d 2740 . . . . . . . 8 (𝑧 = 𝐵 → ((𝐷𝑧 / 𝑥𝐶) = ∅ ↔ (𝐷𝐸) = ∅))
3026, 29orbi12d 915 . . . . . . 7 (𝑧 = 𝐵 → ((𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅) ↔ (𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅)))
3125, 30ralprg 4627 . . . . . 6 ((𝐴𝑉𝐵𝑉) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅) ↔ (⊤ ∧ (𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅))))
32313adant3 1130 . . . . 5 ((𝐴𝑉𝐵𝑉𝐴𝐵) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅) ↔ (⊤ ∧ (𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅))))
33 simp3 1136 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐴𝐵) → 𝐴𝐵)
34 neneq 2948 . . . . . . 7 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
35 biorf 933 . . . . . . 7 𝐴 = 𝐵 → ((𝐷𝐸) = ∅ ↔ (𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅)))
3633, 34, 353syl 18 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐴𝐵) → ((𝐷𝐸) = ∅ ↔ (𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅)))
37 tru 1543 . . . . . . 7
3837biantrur 530 . . . . . 6 ((𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅) ↔ (⊤ ∧ (𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅)))
3936, 38bitrdi 286 . . . . 5 ((𝐴𝑉𝐵𝑉𝐴𝐵) → ((𝐷𝐸) = ∅ ↔ (⊤ ∧ (𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅))))
4032, 39bitr4d 281 . . . 4 ((𝐴𝑉𝐵𝑉𝐴𝐵) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅) ↔ (𝐷𝐸) = ∅))
41 eqeq2 2750 . . . . . . . . 9 (𝑧 = 𝐴 → (𝐵 = 𝑧𝐵 = 𝐴))
42 eqcom 2745 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
4341, 42bitrdi 286 . . . . . . . 8 (𝑧 = 𝐴 → (𝐵 = 𝑧𝐴 = 𝐵))
442, 3, 4csbhypf 3857 . . . . . . . . . . 11 (𝑧 = 𝐴𝑧 / 𝑥𝐶 = 𝐷)
4544ineq2d 4143 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝐸𝑧 / 𝑥𝐶) = (𝐸𝐷))
46 incom 4131 . . . . . . . . . 10 (𝐸𝐷) = (𝐷𝐸)
4745, 46eqtrdi 2795 . . . . . . . . 9 (𝑧 = 𝐴 → (𝐸𝑧 / 𝑥𝐶) = (𝐷𝐸))
4847eqeq1d 2740 . . . . . . . 8 (𝑧 = 𝐴 → ((𝐸𝑧 / 𝑥𝐶) = ∅ ↔ (𝐷𝐸) = ∅))
4943, 48orbi12d 915 . . . . . . 7 (𝑧 = 𝐴 → ((𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅) ↔ (𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅)))
50 id 22 . . . . . . . . . 10 (𝑧 = 𝐵𝑧 = 𝐵)
5150eqcomd 2744 . . . . . . . . 9 (𝑧 = 𝐵𝐵 = 𝑧)
5251orcd 869 . . . . . . . 8 (𝑧 = 𝐵 → (𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅))
53 trud 1549 . . . . . . . 8 (𝑧 = 𝐵 → ⊤)
5452, 532thd 264 . . . . . . 7 (𝑧 = 𝐵 → ((𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅) ↔ ⊤))
5549, 54ralprg 4627 . . . . . 6 ((𝐴𝑉𝐵𝑉) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅) ↔ ((𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅) ∧ ⊤)))
56553adant3 1130 . . . . 5 ((𝐴𝑉𝐵𝑉𝐴𝐵) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅) ↔ ((𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅) ∧ ⊤)))
5737biantru 529 . . . . . 6 ((𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅) ↔ ((𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅) ∧ ⊤))
5836, 57bitrdi 286 . . . . 5 ((𝐴𝑉𝐵𝑉𝐴𝐵) → ((𝐷𝐸) = ∅ ↔ ((𝐴 = 𝐵 ∨ (𝐷𝐸) = ∅) ∧ ⊤)))
5956, 58bitr4d 281 . . . 4 ((𝐴𝑉𝐵𝑉𝐴𝐵) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅) ↔ (𝐷𝐸) = ∅))
6040, 59anbi12d 630 . . 3 ((𝐴𝑉𝐵𝑉𝐴𝐵) → ((∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷𝑧 / 𝑥𝐶) = ∅) ∧ ∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸𝑧 / 𝑥𝐶) = ∅)) ↔ ((𝐷𝐸) = ∅ ∧ (𝐷𝐸) = ∅)))
6120, 60bitrd 278 . 2 ((𝐴𝑉𝐵𝑉𝐴𝐵) → (∀𝑦 ∈ {𝐴, 𝐵}∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅) ↔ ((𝐷𝐸) = ∅ ∧ (𝐷𝐸) = ∅)))
62 disjors 5051 . 2 (Disj 𝑥 ∈ {𝐴, 𝐵}𝐶 ↔ ∀𝑦 ∈ {𝐴, 𝐵}∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐶𝑧 / 𝑥𝐶) = ∅))
63 pm4.24 563 . 2 ((𝐷𝐸) = ∅ ↔ ((𝐷𝐸) = ∅ ∧ (𝐷𝐸) = ∅))
6461, 62, 633bitr4g 313 1 ((𝐴𝑉𝐵𝑉𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝐶 ↔ (𝐷𝐸) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  wne 2942  wral 3063  csb 3828  cin 3882  c0 4253  {cpr 4560  Disj wdisj 5035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-sn 4559  df-pr 4561  df-disj 5036
This theorem is referenced by:  unelldsys  32026
  Copyright terms: Public domain W3C validator