|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elab3gf | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, with a weaker antecedent than elabgf 3673. (Contributed by NM, 6-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| elab3gf.1 | ⊢ Ⅎ𝑥𝐴 | 
| elab3gf.2 | ⊢ Ⅎ𝑥𝜓 | 
| elab3gf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| elab3gf | ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elab3gf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 2 | elab3gf.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 3 | elab3gf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | elabgf 3673 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | 
| 5 | 4 | ibi 267 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) | 
| 6 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 7 | 5, 6 | impbid2 226 | . 2 ⊢ (¬ 𝜓 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | 
| 8 | 1, 2, 3 | elabgf 3673 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | 
| 9 | 7, 8 | ja 186 | 1 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 {cab 2713 Ⅎwnfc 2889 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-v 3481 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |