MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab3gf Structured version   Visualization version   GIF version

Theorem elab3gf 3635
Description: Membership in a class abstraction, with a weaker antecedent than elabgf 3625. (Contributed by NM, 6-Sep-2011.)
Hypotheses
Ref Expression
elab3gf.1 𝑥𝐴
elab3gf.2 𝑥𝜓
elab3gf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3gf ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))

Proof of Theorem elab3gf
StepHypRef Expression
1 elab3gf.1 . . . . 5 𝑥𝐴
2 elab3gf.2 . . . . 5 𝑥𝜓
3 elab3gf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elabgf 3625 . . . 4 (𝐴 ∈ {𝑥𝜑} → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
54ibi 267 . . 3 (𝐴 ∈ {𝑥𝜑} → 𝜓)
6 pm2.21 123 . . 3 𝜓 → (𝜓𝐴 ∈ {𝑥𝜑}))
75, 6impbid2 226 . 2 𝜓 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
81, 2, 3elabgf 3625 . 2 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
97, 8ja 186 1 ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wnf 1784  wcel 2111  {cab 2709  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator