![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab4g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
elab4g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab4g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab4g | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ V ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | elab4g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | elab4g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
4 | 2, 3 | elab2g 3696 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
5 | 1, 4 | biadanii 821 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ V ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: isprs 18367 ispos 18384 istrkgc 28480 istrkgb 28481 istrkgcb 28482 istrkge 28483 istrkgl 28484 eulerpartlemt0 34334 istrkg2d 34643 |
Copyright terms: Public domain | W3C validator |