Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elab4g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
elab4g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab4g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab4g | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ V ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3448 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | elab4g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | elab4g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
4 | 2, 3 | elab2g 3612 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
5 | 1, 4 | biadanii 818 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ V ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 Vcvv 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 |
This theorem is referenced by: isprs 17996 ispos 18013 istrkgc 26796 istrkgb 26797 istrkgcb 26798 istrkge 26799 istrkgl 26800 eulerpartlemt0 32315 istrkg2d 32625 |
Copyright terms: Public domain | W3C validator |