MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab4g Structured version   Visualization version   GIF version

Theorem elab4g 3653
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
Hypotheses
Ref Expression
elab4g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab4g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab4g (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab4g
StepHypRef Expression
1 elex 3471 . 2 (𝐴𝐵𝐴 ∈ V)
2 elab4g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 elab4g.2 . . 3 𝐵 = {𝑥𝜑}
42, 3elab2g 3650 . 2 (𝐴 ∈ V → (𝐴𝐵𝜓))
51, 4biadanii 821 1 (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452
This theorem is referenced by:  isprs  18264  ispos  18282  istrkgc  28388  istrkgb  28389  istrkgcb  28390  istrkge  28391  istrkgl  28392  eulerpartlemt0  34367  istrkg2d  34664
  Copyright terms: Public domain W3C validator