| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab4g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| elab4g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab4g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab4g | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ V ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | elab4g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab4g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 3631 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | biadanii 821 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ V ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: isprs 18197 ispos 18215 istrkgc 28427 istrkgb 28428 istrkgcb 28429 istrkge 28430 istrkgl 28431 eulerpartlemt0 34374 istrkg2d 34671 |
| Copyright terms: Public domain | W3C validator |